
1

2

3

Table of Contents

Getting Started:
Introduction . 6
Installation . 7
Getting Started with CellProfiler . 9

Help:
BatchProcessing . 11
Colormaps. .16
DefaultImageFolder . 17
DefaultOutputFolder . 18
DeveloperInfo . 19
FastMode . 30
MemoryAndSpeed . 31
OutputFilename . 33
PixelSize . 34
Preferences . 35
SaveCurrentCellProfilerCode. .36
SkipErrors . 37
TechDiagnosis . 38

File Processing modules:
CreateBatchFiles . 56
ExportToDatabase . 75
ExportToExcel . 78
GroupMovieFrames . 87
LoadImageDirectory . 108
LoadImages . 110
LoadSingleImage . 116
LoadText . 117
RenameOrRenumberFiles . 146
Restart. .150
SaveImages . 151
SplitOrSpliceMovie . 157

Image Processing modules:
Align. .39
ApplyThreshold. .41
ColorToGray. .49
Combine . 50
CorrectIlluminationApply . 52
CorrectIlluminationCalculate .53
Crop . 59
DICTransform . 62
DifferentiateStains . 65
FindEdges . 82
FlagImageForQC. .84

FlipAndRotate . 85
GrayToColor .86
ImageMath. .104
InvertForPrinting . 105
MakeProjection. .118
MaskImage. .119
Morph . 140
OverlayOutlines . 141
PlaceAdjacent . 143
RescaleIntensity . 147
Resize . 149
SmoothOrEnhance . 154
SubtractBackground . 158
Tile . 160

Object Processing modules:
ClassifyObjects . 47
ClassifyObjectsByTwoMeasurements 48
ConvertToImage . 51
EditObjectsManually . 71
Exclude . 72
ExpandOrShrink . 73
FilterByObjectMeasurement . 81
IdentifyObjectsInGrid . 88
IdentifyPrimAutomatic . 89
IdentifyPrimLoG . 96
IdentifyPrimManual . 98
IdentifySecondary . 99
IdentifyTertiarySubregion. .103
KeepLargestObject . 106
RelabelObjects . 144
Relate . 145
TrackObjects . 161

Measurement modules:
CalculateImageOverlap . 42
CalculateMath .43
CalculateStatistics . 44
FileNameMetadata . 79
MeasureCorrelation . 120
MeasureImageAreaOccupied. .121
MeasureImageGranularity . 123
MeasureImageIntensity . 125
MeasureImageQuality . 126
MeasureNeurons .129
MeasureObjectAreaShape . 130
MeasureObjectIntensity . 133

4

MeasureObjectNeighbors . 135
MeasureRadialDistribution . 137
MeasureTexture . 138

Other modules:
CreateWebPage . 57
DefineGrid . 63
DisplayDataOnImage . 66
DisplayGridInfo . 67
DisplayHistogram . 68
DisplayImageHistogram . 69
DisplayMeasurement . 70
LabelImages . 107
PauseCellProfiler . 142
SendEmail . 153
SpeedUpCellProfiler . 156

Image tools:
ImageToolWindow . 164
InteractiveZoom . 165
OpenNewImageFile . 166
ShowHelpForThisMenu . 167
ShowOrHidePixelData . 168
ShowOrHidePixelDistances . 169

Data tools:
AddData . 170
CalculateRatiosDataTool . 171
CalculateStatisticsDataTool . 172
ClearData . 173
ConvertBatchFiles . 174
DataLayout . 175
ExportData . 176
ExportDatabase . 177
ExportLocations . 178
FlagImageByMeasurement . 179
GenerateHistogramMovie . 180
Histogram. .181
MeasurementCalculator . 184
MergeOutputFiles . 185
PlotMeasurement .186
ShowDataOnImage . 187
ShowPlateMapData . 188
SubmitBatch . 189
ViewData . 190

5

Introduction

CellProfilerTM cell image analysis software

CellProfiler cell image analysis software is designed for biologists
without training in computer vision or programming to quantitatively
measure phenotypes from thousands of images automatically.

CellProfiler Developer’s version allows you to write your own modules and
tools for CellProfiler using Matlab.

6

Installation

Get the latest code from www.cellprofiler.org

CellProfiler Installation Guide: Macintosh OSX Version

1. Download and unzip CellProfiler to any folder, but all files must
remain in the same folder and the folder’s name must not have spaces
(e.g. /Applications/CellProfiler).

2. Download and install X11.
http://www.apple.com/downloads/macosx/apple/x11formacosx.html

3. To start CellProfiler, double click CellProfiler.command, located in
the folder where CellProfiler was un-zipped.

4. (Optional steps) Get up and running quickly with one of the sample
pipelines on our Examples page, and check out Help > HelpGettingStarted
within CellProfiler. In CellProfiler, set some basic preferences in File
> Set preferences, which will make it easier to use CellProfiler. You can
drag CellProfiler.command to the dock (on the side near the trash) so the
program is easily accessible in the future.

CellProfiler Installation Guide: Windows PC Version

1. Download and extract CellProfiler.exe, CellProfiler.ctf, and the
Modules directory to any folder, but all files must remain in the same
folder (e.g. C:\Program Files\CellProfiler).

2. Download and run MCRInstaller.exe (see link on CellProfiler website).

3. To start CellProfiler, run CellProfiler.exe. The first time the
program is run, it will take a bit longer to de-compress the CTF file.

4. (Optional steps) Get up and running quickly with one of the sample
pipelines on our Examples page, and check out Help > HelpGettingStarted
within CellProfiler. In CellProfiler, set some basic preferences in File
> Set preferences, which will make it easier to use CellProfiler. On many
PC’s, it is beneficial to set the font size to 8 instead of 10.

CellProfiler Installation Guide: Developer’s version

1. (Mac only) Set X11 setting... Close MATLAB & X11. Open the Mac
application called ’Terminal’ (Applications > Utilities > Terminal) and
type the following to ensure that display windows behave properly:
defaults write com.apple.x11 wm_click_through -bool true

7

2. Start MATLAB and check licenses... Start MATLAB and type into the main
window (command line): license(’test’,’image_toolbox’) If the Image
Processing Toolbox is installed with a valid license you will see: ans =
1, but if ans = 0, the toolbox and/or license is not installed.
CellProfiler was designed for MATLAB Release 14, version 7.1, SP3
although it is possible that many functions will work on other versions.
We have noticed lots of MATLAB crashing with Mac OS10.2 but OS10.3 is
fine.

3. Copy the CellProfiler files to your computer... Put them in a folder
named CellProfiler at any location - suggested: On Mac:
/Applications/CellProfiler On PC: C:\Program Files Once the files are
copied, do not move or rename this folder or any folders containing it,
or you will have to repeat the next step.

4. Start CellProfiler... To start CellProfiler for the first time, you
must call it directly. After the first time, you may simply type
"CellProfiler" in the main MATLAB window to start CellProfiler. To call
CellProfiler directly, type the following in the main MATLAB window
(LOCATION is where the CellProfiler folder is located): On Mac: run
’/LOCATION/CellProfiler/CellProfiler.m’ For example: run
’/Applications/CellProfiler/CellProfiler.m’

On PC: run ’\LOCATION\CellProfiler\CellProfiler.m’ For example: run
’C:\Program Files\CellProfiler\CellProfiler.m’

5. (Optional steps) Get up and running quickly with one of the sample
pipelines on our Examples page, and check out Help > HelpGettingStarted
within CellProfiler. In CellProfiler, set some basic preferences in File
> Set preferences, which will make it easier to use CellProfiler.

8

Getting Started with CellProfiler

The best way to learn how to use CellProfiler is to load an example
pipeline (from www.cellprofiler.org) and try it out. Or, you can build a
pipeline from scratch. A pipeline is a sequential set of individual image
analysis modules. See also Help (main menu of CellProfiler) and "?"
buttons in the main window.
To learn how to program in CellProfiler, see Help > DeveloperInfo.
To learn how to use a cluster of computers to process large batches
of images, see Help > BatchProcessing.

************************ LOADING A PIPELINE ************************

STEP 1: Put the images and pipeline into a folder on your computer.

STEP 2: Set the default image and output folders (lower right of the main
window) to be the folder where you put the images.

STEP 3: Load the pipeline using File > Load Pipeline in the main menu of
CellProfiler.

STEP 4: Click "Analyze images" to start processing.

STEP 5: Examine the measurements using Data Tools.
Data Tools are accessible in the main menu of CellProfiler and allow you
to plot, view, or export your measurements (e.g. to Excel).

STEP 6: If you modify the modules or settings in the pipeline, you can
save the pipeline using File > Save Pipeline. See the end of this
document for more information on pipeline files.

***************** BUILDING A PIPELINE FROM SCRATCH *****************

STEP 1: Place modules in a new pipeline.
Choose image analysis modules to add to your analysis routine (your
"pipeline") by clicking ’+’. Typically, the first module which must be
run is the Load Images module, where you specify the identity of the
images that you want to analyze. Modules are added to the end of the
pipeline, but their order can be adjusted in the main window by selecting
module(s) and using the Move up ’^’ and Move down ’v’ buttons. The ’-’
button will delete selected module(s) from the pipeline.

Most pipelines depend on a major step: Identifying objects. In
CellProfiler, the objects you identify are called Primary, Secondary, or
Tertiary. What does this mean? Identify Primary modules identify objects
without relying on any information other than a single grayscale input
image (e.g. nuclei are typically primary objects). Identify Secondary
modules require a grayscale image plus an image where primary objects
have already been identified, because the secondary objects’ locations
are determined in part based on the primary objects (e.g. cells can be
secondary objects). Identify Tertiary modules require images where two
sets of objects have already been identified (e.g. nuclei and cell
regions are used to define the cytoplasm objects, which are tertiary

9

objects).

Saving images in your pipeline: Due to the typically high number of
intermediate images produced during processing, images produced during
processing are not saved to the hard drive unless you specifically
request it, using a Save Images module.

STEP 2: Adjust the settings in each module.
Back in the main window of CellProfiler, click a module in the pipeline
to see its settings in the main workspace. To learn more about the
settings for each module, select the module in the pipeline and click the
"?" button below the pipeline.

STEP 3: Set the default image folder, default output folder, pixel
size, and output filename.
For more help, click their nearby "?" buttons in the main window.

STEP 4: Click "Analyze images" to start processing.
All of the images in the selected folder(s) will be analyzed using the
modules and settings you have specified. You will have the option to
cancel at any time. At the end of each cycle, the data are saved in the
output file.

STEP 5: Examine your measurements using Data Tools.
Data Tools are accessible in the main menu of CellProfiler and allow you
to plot, view, or export your measurements (e.g. to Excel).

Note: You can test an analysis on a single image cycle by setting the
Load Images module appropriately. For example, if loading by order, you
can set the number of images per set to equal the total number of images
in the folder (even if it is thousands) so that only the first cycle will
be analyzed. Or, if loading by text, you can make the identifying text
specific enough that it will recognize only one group of images in the
folder. Once the settings look good for a few test images, you can change
the Load Images module to recognize all images in your folder.

STEP 6: Save your pipeline.
This step can be done at any time using File > Save Pipeline.

Note about CellProfiler "PIPE" pipeline files: A pipeline can be loaded
from a pipeline file or from any output file created using the pipeline.
A pipeline file is very small and is therefore more convenient for
sharing with colleagues. It also allows you to save your work on a
pipeline even if it’s not ready to run yet. Loading/Saving Pipeline files
will load/save these: the image analysis modules, their settings, and the
pixel size. It will not save the default image or output folder.

10

CellProfiler Help: BatchProcessing

CellProfiler is designed to analyze images in a high-throughput manner.
Once a pipeline has been established for a set of images, CellProfiler
can export batches of images to be analyzed on a cluster with the
pipeline. We often analyze 40,000-130,000 images for one analysis in this
manner. This is accomplished by breaking the entire set of images into
separate batches, and then submitting each of these batches as individual
jobs to a cluster. Each individual batch can be separately analyzed from
the rest.

There are two methods of processing these batches on a cluster. The first
requires a MATLAB license for every computing node of the cluster. This
method produces small MATLAB script files which specify the images to
analyze. The other method does not require MATLAB licenses for the entire
cluster, but does require a bit more effort to set up. This method
produces small MATLAB .mat files which specify the images to analyze.

*************** SETTING UP CLUSTER WITH MATLAB **************************
Step 1: Create a folder on your cluster for CellProfiler (e.g.
/home/username/CellProfiler). This folder must be connected to the
cluster computers’ network and readable by all. If you don’t know what
this means, please ask your IT department for help.

Step 2: Copy all CellProfiler source code files into this folder, keeping
the file structure intact. This version of CellProfiler must be the same
as the version used to create the pipeline. Sometimes modules are changed
between versions and this can cause errors.

Step 3: Create batchrun.sh file. This file will allow you to rapidly
submit jobs to your cluster, rather than you typing out commands one at a
time to submit jobs individually. There are different software programs
which control how jobs are submitted to a cluster. The example below is
for our cluster at the Whitehead Institute which uses LSF software.
Contact your IT department for help writing a similar file to work with
your own cluster.

Example (LSF): Open any text editor and copy in the code below, then save
the file to any directory, usually your home directory is fine. Then
change the following lines to fit your cluster:
MATLAB=/SOME_PATH/MATLAB
LICENSE_SERVER="12345@yourservers.edu"
Also, you can specify your e-mail address after the bsub command.

Note that in the example script below, we had to wrap some lines (marked
with >>>>>: you should remove the >>> symbols and wrap the line with the
previous.

#!/bin/sh
if test $# -ne 5; then
echo "usage: $0 M_fileDir BatchTxtOutputDir mat_fileDir BatchFilePrefix

>>>>> QueueType" 1>&2 exit 1
fi

11

start to process
BATCHDIR=$1
BATCHTXTOUTPUTDIR=$2
BATCHMATOUTPUTDIR=$3
BATCHFILEPREFIX=$4
QueueType=$5
MATLAB=/SOME_PATH/MATLAB
LICENSE_SERVER="12345@yourservers.edu"
export DISPLAY=""
loop through each .mat file
for i in $BATCHDIR/$BATCHFILEPREFIX*.m; do

BATCHFILENAME=‘basename $i .m‘
if [! -e $BATCHMATOUTPUTDIR/${BATCHFILENAME}_OUT.mat]; then
echo Re-running $BATCHDIR/$BATCHFILENAME
bsub -q $5 -o $BATCHTXTOUTPUTDIR/$BATCHFILENAME.txt -u
username@wi.mit.edu -R ’rusage [img_kit=1:duration=1]’

>>>>>"$MATLAB/bin/matlab -nodisplay -nojvm -c $LICENSE_SERVER <
>>>>>$BATCHDIR/$BATCHFILENAME.m"

fi
done
#INSTRUCTIONS
#From the command line, logged into your cluster submit the jobs using
#this script as follows:
#./batchrun.sh /FOLDERWHEREMFILESARE /FOLDERWHERETEXTLOGSSHOULDGO

>>>>>/FOLDERWHEREMATFILESARE BATCHPREFIXNAME QueueType
#Note that FOLDERWHEREMATFILESARE is usually the same as
#FOLDERWHEREMFILESARE. This is mainly if you are trying to re-run failed
#jobs - it only runs m files if there is no corresponding mat file
#located in the FOLDERWHEREMATFILESARE. For example:
#./batchrun.sh /nfs/sabatini2_ata/PROJECTFOLDER

>>>>>/nfs/sabatini2_ata/PROJECTFOLDER /nfs/sabatini2_ata/
>>>>>PROJECTFOLDER Batch_ normal
END COPY

Step 4: Change batchrun.sh to be executable. Open a terminal, navigate to
the folder where batchrun.sh is located, and type:

chmod a+x batchrun.sh

If you don’t know what this means, please ask your IT department.

Step 5: Submit files. See SUBMITTING FILES FOR BATCH PROCESSING below.

*********** END OF SETTING UP CLUSTER WITH MATLAB ***********************

************** SETTING UP CLUSTER WITHOUT MATLAB ************************
Step 1: Download and install correct version of CPCluster from
www.cellprofiler.org. If the versions there do not work, it means your
cluster is running different versions of the operating systems, so you
will have to download the CPCluster source code and compile it
specifically for your cluster. This requires a single MATLAB license. For
more instructions on accomplishing this, see the instructions that are

12

downloaded with the CPCluster source code.

Step 2: Create batchrun.sh file. This file will allow you to rapidly
submit jobs to your cluster, rather than you typing out commands one at a
time to submit jobs individually. There are different software programs
which control how jobs are submitted to a cluster. The example below is
for our cluster at the Whitehead Institute which uses LSF software.
Contact your IT department for help writing a similar file to work with
your own cluster.

Example (LSF): Open any text editor and copy in the code below, then save
the file to any directory, usually your home directory is fine. Then
change the following lines to fit your cluster:
CPCluster=/Users/username/CPCluster
Also, you can specify your e-mail address after the qsub command.

Note that in the example script below, we had to wrap some lines (marked
with >>>>>: you should remove the >>> symbols and wrap the line with the
previous.

#!/bin/sh
if test $# -ne 5; then

echo "usage: $0 M_fileDir BatchTxtOutputDir mat_fileDir
>>>>>BatchFilePrefix QueueType" 1>&2

exit 1
fi

BATCHDIR=$1
BATCHTXTOUTPUTDIR=$2
BATCHMATOUTPUTDIR=$3
BATCHFILEPREFIX=$4
QueueType=$5

echo $BATCHDIR
echo $BATCHTXTOUTPUTDIR
echo $BATCHMATOUTPUTDIR
echo $BATCHFILEPREFIX
echo $QueueType

CPCluster=/Users/username/CPCluster

for i in $BATCHDIR/$BATCHFILEPREFIX*.mat; do
BATCHFILENAME=‘basename $i .mat‘
if [$BATCHFILENAME != ${BATCHFILEPREFIX}data]; then

if [! -e $BATCHMATOUTPUTDIR/${BATCHFILENAME}_OUT.mat]; then
echo Running $BATCHDIR/$BATCHFILENAME
qsub -S /bin/bash -o $BATCHTXTOUTPUTDIR/$BATCHFILENAME.txt -M

>>>>>username@wi.mit.edu $CPCluster/CPCluster.command
>>>>>$BATCHDIR/${BATCHFILEPREFIX}data.mat $BATCHDIR/$BATCHFILENAME.mat

fi
fi

done

13

Step 3: Change batchrun.sh to be executable. Open a terminal, navigate to
the folder where batchrun.sh is located, and type:

chmod a+x batchrun.sh

If you don’t know what this means, please ask your IT department.

Step 4: Submit files. See SUBMITTING FILES FOR BATCH PROCESSING below.

********** END OF SETTING UP CLUSTER WITHOUT MATLAB *********************

************ SUBMITTING FILES FOR BATCH PROCESSING **********************

Note that in several steps below, we had to wrap some lines (marked
with >>>>>: you should remove the >>> symbols and wrap the line with the
previous.

Step 1:
Create a project folder on your cluster. For high throughput analysis, it
is a good idea to create a separate project folder for each run. In
general, we like to name our folders with the following convention:
200X_MM_DD_ProjectName. Within this folder, we usually create an "images"
folder and an "output" folder. We then transfer all of our images to the
images folder. The output folder is where all of your data will be
stored. These folders must be connected to the cluster computers network
and the output folder must be writeable by everyone (or at least your
cluster) because each of the separate cluster computers will write output
files in this folder. If you don’t know what this means, ask your IT
department for help. Within the CellProfiler window, set the appropriate
project folders to be the default image and output folders.

Step 2: Create a pipeline for your image set, testing it on a few example
images from your image set. In this process, you must be careful to
consider the worst case scenarios in your images. For instance, some
images may contain no cells. If this happens, the automatic thresholding
algorithms will incorrectly choose a very low threshold, and therefore
’find’ objects which don’t exist. This can be overcome by setting a
’minimum’ threshold in IdentifyPrimAutomatic module.

Step 3: Add the module CreateBatchFiles to the end of your pipeline.
Please refer to the help for this module to choose the correct settings.
If you are processing large batches of images, you may also consider
adding ExportToDatabase to your pipeline, before the CreateBatchFiles
module. This module will export your data into comma separated values
format (CSV), and also create a script to import your data into Oracle or
MySQL databases.

Step 4: Click the Analyze images button. The analysis will begin locally
processing the first image set. Do not be surprised if processing the
first image set takes much longer than usual. The first step is to check
all the images that are present in the images folder - they are not
opened or loaded, but just checking the presence of all the files takes a
while. At the end of processing the first cycle locally, the
CreateBatchFiles module causes local processing to stop and it then

14

creates the proper batch files and saves them in the default output
folder (Step 1). It will also save the necessary data file, which is
called XXX_data.mat. You are now ready to submit these batch files to the
cluster to run each of the batches of images on different computers on
the cluster.

Step 5: Log on to your cluster, and navigate to the directory where you
have saved the batchrun.sh file (See "Setting Up Cluster For
CellProfiler"). The usage of batchrun.sh is as follows:

./batchrun.sh M_fileDir BatchTxtOutputDir mat_fileDir BatchFilePrefix
>>>>>QueueType

where M_fileDir is the location of the batch files created by
CreateBatchFiles in step 4, BatchTxtOutputDir is where you want to store
the txt files which have the output of MATLAB during the analysis
(includes information like errors and run times), mat_fileDir is the
folder where XXX_data.mat is located (this file is created in Step 4),
BatchFilePrefix is the prefix named in CreateBatchFiles (usually Batch_),
and QueueType is the queue for your cluster. Usually, the first three
arguments are all the same. Here is an example of how you would submit
all of your batch files to the cluster:

./batchrun.sh /Some_Path/200X_XX_XX_ProjectName/output
>>>>>/Some_Path/200X_XX_XX_ProjectName/output
>>>>>/Some_Path/200X_XX_XX_ProjectName/output Batch_ normal

In this case, the output folder contains the script files, the
XXX_data.mat file, and is the folder where we want the txt files with the
MATLAB output to be written. The prefix is Batch_ so XXX_data.mat is
actually Batch_data.mat. The queue type is normal, but this is specific
to your cluster. Ask your IT department what queues are available for
your use.

Once all the jobs are submitted, the cluster will run each script
individually and produce a separate output file containing the data for
that batch of images in the output directory. Then you can decide how to
access your data. In general, data from large analyses will be loaded
into a database. Please refer to the ExportToDatabase module for
information on how to do this. If you have made a very small number of
measurements, you might be able to use the MergeOutputFiles DataTool, see
its instructions for further details.

If the batch processing fails for some reason, the handles structure in
the output file will have a field BatchError, and the error will also be
written to standard out. Check the output from the batch processes to
make sure all batches complete. Batches that fail for transient reasons
can be resubmitted.

********* END OF SUBMITTING FILES FOR BATCH PROCESSING ******************

15

CellProfiler Help: Colormaps

Default colormaps can be set in File > Set preferences.

Label colormap - affects how objects are colored. Colorcube (and possibly
other colormaps) is not recommended because some intensity values are
displayed as black. Jet is the default.

Intensity colormap - affects how grayscale images are displayed.
Colorcube (and possibly other colormaps) is not recommended because some
intensity values are displayed as black. Gray is recommended.

Choose from these colormaps:
autumn bone colorcube cool copper flag gray hot hsv jet lines pink
prism spring summer white winter

16

CellProfiler Help: DefaultImageFolder

Help for the default image folder, in the main CellProfiler window:
Select the main folder containing the images you want to analyze. Use
the Browse button to select the folder, or carefully type the full
pathname in the box. You can change the folder which is the
default image folder upon CellProfiler startup by using File > Set
Preferences.

The contents of the folder are shown to the left, which allows you to
check file names or look at the order of images from within CellProfiler.
Doubleclicking image file names in this list will open them.
Doubleclicking on PIPE or OUT files will ask if you want to load a
pipeline from the file. To refresh the contents of this window, press
enter in the default image directory edit box.

You will have the option within the Load Images module to retrieve images
from other folders, but the folder selected here will be the default.

Be careful that files other than your images of interest are not stored
within the folder you have selected. The following file extensions are
ignored by CellProfiler, so these are the only types which can be left in
the folder with the images you want to analyze:
m, m~, frk~, xls, doc, rtf, txt, csv, or any file beginning with a dot.

CellProfiler Developer’s version note: If you would like to add a
particular file format to this list, first save a copy of the main
CellProfiler program (CellProfiler.m) in a separate location as a backup
in case you make an error, then go to File > Open and select
CellProfiler.m. Find the line that looks like the following and add any
extensions:
DiscardsByExtension = regexpi(FileNamesNoDir, ’\.(m|mat|m~|frk~|xls|

doc|rtf|txt|csv)$’, ’once’);
Save the file. You do not need to relaunch MATLAB or CellProfiler for
this change to take effect.

17

CellProfiler Help: DefaultOutputFolder

Help for the default output folder, in the main CellProfiler window:
Select the main folder where you want CellProfiler’s output to be saved.
Use the Browse button to select the folder, or carefully type the full
pathname in the box. You can change the folder which appears upon
CellProfiler startup by using File > Set Preferences.

You will have the option to save output to other locations: for example,
the output file can be saved elsewhere by typing a full pathname in the
’Name the output file’ box, and many modules (like Save Images) allow you
to override the default output folder by entering the pathname in the
settings.

18

CellProfiler Help: DeveloperInfo

Programming Notes for CellProfiler Developer’s version

*** INTRODUCTION ***

You can write your own modules, image tools, and data tools for
CellProfiler - the easiest way is to modify an existing one. CellProfiler
is modular: every module, image tool, and data tool is a single MATLAB
m-file (extension = .m). Upon startup, CellProfiler scans its Modules,
DataTools, and ImageTools folders looking for files. Simply put your new
file in the proper folder and it will appear in the proper place. They
are automatically categorized, their help extracted, etc.

If you have never tried computer programming or have not used MATLAB,
please do give it a try. Many beginners find this language easy to learn
and the code for CellProfiler is heavily documented so that you can
understand what each line does. It was designed so that biologists
without programming experience could adapt it.

*** HELP SECTIONS AT THE BEGINNING OF EACH MODULE AND TOOL ***

The first unbroken block of lines will be extracted as help by
CellProfiler’s ’Help for this analysis module’ button, Help for image
tools and data tools (Help menu in the main CellProfiler window) as well
as MATLAB’s built in ’help’ and ’doc’ functions at the command line. It
will also be used to automatically generate a pdf manual page for the
module. An example image demonstrating the function of the module can
also be saved in tif format, using the same name as the module, and it
will automatically be included in the pdf manual page as well. Follow
the convention of: Help for the XX module, Category (use an exact match
of one of the categories so your module appears in the proper place in
the "Add module" window), Short description, purpose of the module,
description of the settings and acceptable range for each, how it works
(technical description), and See also NameOfModule. The license/author
information should be separated from the help lines with a blank line so
that it does not show up in the help displays.

*** SETTINGS (CALLED ’VARIABLES’ IN THE CODE) ***

Variables are automatically extracted from lines in a commented section
near the beginning of each module. Even though they look like comments
they are critical for the functioning of the code. The syntax here is
critical - indenting lines or changing the spaces before and after the
equals sign will affect the ability of the variables to be read properly.

* The ’%textVAR’ lines contain the variable descriptions which are
displayed in the CellProfiler main window next to each variable box. This
text will wrap appropriately so it can be as long as desired, but it must
be kept on a single line in the m-file (do not allow it to wrap).

* Whether the variable is entered into an edit box, chosen from a popup
menu, or selected using browse buttons is determined by %inputtypeVAR

19

lines and the %textVAR lines. The options are:
- edit box (omit any %inputtypeVAR line for that variable number and use
a %defaultVAR line to specify what text will appear in the box when the
user first loads the module)
- popup menu (use %inputtypeVAR = popupmenu and then use %choiceVAR
lines, in the order you want them to appear, for each option that should
appear in the popup menu)
- popupmenu custom (this allows the user to choose from choices but also
to have the option of typing in a custom entry. Use %inputtypeVAR =
popupmenu custom and then use %choiceVAR lines, in the order you want
them to appear, for each option that should appear in the popup menu)
- pathname box + browse button (omit the %inputtypeVAR line and instead
use %pathnametextVAR - the default shown in the edit box will be a
period; this default is currently not alterable)
- filename box + browse button (omit the %inputtypeVAR line and instead
use %filenametextVAR - the default shown in the edit box will be the text
"Do not use"; this default is currently not alterable)

* The %infotypeVAR lines specify the group that a particular entry will
belong to. You will notice that many entries that the user types into the
main window of CellProfiler are then available in popup menus in other
modules. This works by classifying certain types of variable entries as
follows:
- imagegroup indep: the user’s entry will be added to the imagegroup, and
will therefore appear in the list of selectable images for variables
whose type is ’imagegroup’. Usually used in combination with an edit
box; i.e. no %inputtype line.
- imagegroup: will display the user’s image entries. Usually used in
combination with a popupmenu.
- objectgroup indep and objectgroup: Same idea as imagegroup, for passing
along object names.
- outlinegroup indep and outlinegroup: Same idea as imagegroup, for
passing along outline names.
- datagroup indep and datagroup: Same idea as imagegroup, for passing
along text/data names.
- gridgroup indep and gridgroup: Same idea as imagegroup, for passing
along grid names.

* The line of actual code within each group of variable lines is what
actually extracts the value that the user has entered in the main window
of CellProfiler (which is stored in the handles structure) and saves it
as a variable in the workspace of this module with a meaningful name.

* For CellProfiler to load modules and pipelines correctly, the order of
variable information should be as follows:
%textVAR01 = Whatever text description you want to appear
%defaultVAR01 = Whatever text you want to appear
(OR, %choiceVAR01 = Whatever text)
%infotypeVAR01 = imagegroup indep
BlaBla = char(handles.Settings.VariableValues{CurrentModuleNum,1});
%inputtypeVAR01 = popupmenu
For cases in which the variable input is optional or your module should

ignore the contents of the variable box, the standard placeholder text is
"Do not use." Please follow this naming convention whenever new modules

20

are created or modified.
In particular, when the input type is "popupmenu custom", the
choiceVAR01 line should be after textVAR01. This order is necessary
because the textVAR01 creates a VariableBox associated with a variable
number. Also, the defaultVAR01 value will inadvertently overwrite saved
settings when loading a saved pipeline if it is located after
infotypeVAR01 or inputtypeVAR01.

When loading the settings of pipeline modules, CellProfiler tries to find
handles.Settings.VariableValues{ModuleNums,i} from the list of
handles.VariableBox{ModuleNums}(i),

for example,
the pipeline-specified ’Gaussian Filter’ from the list of
available Smoothing methods in the loaded module.

It is searched and set in CellProfiler.m, exactly starting
with this line of code:

PPos = find(strcmp(handles.Settings.VariableValues{ModuleNums,i},OptList));
You may want to add your own action code here when a certain setting is
found in a loaded module.

* CellProfiler uses VariableRevisionNumbers to help programmers notify
users when something significant has changed about the variables.
For example, if you have switched the position of two variables,
loading a pipeline made with the old version of the module will not
behave as expected when using the new version of the module, because
the settings (variables) will be mixed up. The line should use this
syntax:
%%%VariableRevisionNumber = 1

If the module does not have this line, the VariableRevisionNumber is
assumed to be 0. This number need only be incremented when a change made
to the modules will affect a user’s previously saved settings. There is a
revision number at the end of the license info at the top of the m-file
for our source-control revisions - this revision number does not affect
the user’s previously saved settings files and you can ignore it.
However, a line with "% $Revision: 5791 $" should be added to any new
function, so that the version-control system will find and update the
number upon new commits.

*** STORING AND RETRIEVING DATA: THE HANDLES STRUCTURE ***

In CellProfiler (and MATLAB in general), each independent function
(module) has its own workspace and is not able to ’see’ variables
produced by other modules. For data or images to be shared from one
module to the next, they must be saved to what is called the ’handles
structure’. This is a variable, whose class is ’structure’, and whose
name is handles. The contents of the handles structure can be printed out
at the command line of MATLAB using the Tech Diagnosis button and typing
"handles" (no quotes). The only variables present in the *main* handles
structure are handles to figures and GUI elements. Everything else should
be saved in one of the following substructures:

handles.Settings:
Everything in handles.Settings is stored when the user uses File > Save
pipeline, and these data are loaded into CellProfiler when the user uses

21

File > Load pipeline. This substructure contains all necessary
information to re-create a pipeline, including which modules were used
(including variable revision numbers), their settings (variables), and
the pixel size. Fields currently in handles.Settings: PixelSize,
VariableValues, NumbersOfVariables, VariableInfoTypes,
VariableRevisionNumbers, ModuleNames, SelectedOption.

*** N.B. handles.Settings.PixelSize is where you should retrieve the
PixelSize if needed, not in handles.Preferences!

handles.Pipeline: This substructure is deleted at the beginning of
the analysis run (see ’Which substructures are deleted prior to an
analysis run?’ below). handles.Pipeline is for storing data which
must be retrieved by other modules. This data can be overwritten as
each image cycle is processed, or it can be generated once and then
retrieved during every subsequent image set’s processing, or it can
be saved for each image set by saving it according to which image
cycle is being analyzed, depending on how it will be used by other
modules. Example fields in handles.Pipeline: FileListOrigBlue,
PathnameOrigBlue, FilenameOrigBlue, OrigBlue (which contains the
actual image). Whether the handles.Pipeline structure is stored in
the output file or not depends on whether you are in Fast Mode (see
Help > HelpFastMode or File > SetPreferences). See note below for
the FileList..., Pathname..., and Filename... fields.

handles.Current:
This substructure contains information needed for the main CellProfiler
window display and for the various modules and help files to function. It
does not contain any module-specific data (which is in handles.Pipeline).
Example fields in handles.Current: NumberOfModules, StartupDirectory,
DefaultOutputDirectory, DefaultImageDirectory, FilenamesInImageDir,
CellProfilerPathname, CurrentHandles, ImageToolsFilenames, ImageToolHelp,
DataToolsFilenames, DataToolHelp, HelpFilenames, Help, NumberOfImageSets,
SetBeingAnalyzed, SaveOutputHowOften, TimeStarted, CurrentModuleNumber,
FigureNumberForModuleXX.

handles.Preferences:
Everything in handles.Preferences is stored in the file
CellProfilerPreferences.mat when the user uses File > Set Preferences.
These preferences are loaded upon launching CellProfiler, or individual
preferences files can be loaded using File > Load Preferences. Fields in
handles.Preferences: PixelSize, DefaultModuleDirectory,
DefaultOutputDirectory, DefaultImageDirectory, IntensityColorMap,
LabelColorMap, StripPipeline, SkipErrors, FontSize.

The PixelSize, DefaultImageDirectory, and DefaultOutputDirectory
fields can be changed for the current session by the user using edit
boxes in the main CellProfiler window, which changes their values in
handles.Settings or handles.Current. Therefore:

*** N.B. handles.Settings.PixelSize is where you should retrieve the
PixelSize if needed, not in handles.Preferences!

*** N.B. handles.Current.DefaultImageDirectory is where you should
retrieve the DefaultImageDirectory if needed, not in handles.Preferences!

*** N.B. handles.Current.DefaultOutputDirectory is where you should
retrieve the DefaultOutputDirectory if needed, not in
handles.Preferences!

22

handles.Measurements:
Everything in handles.Measurements contains data specific to each image
analyzed and is therefore accessed by the data tools. This substructure
is deleted at the beginning of the analysis run (see ’Which substructures
are deleted prior to an analysis run?’ below).

Note that two types of measurements are typically made: Object
and Image measurements. Object measurements have one number for every
object in the image (e.g. Object Area) and image measurements have one
number for the entire image, which could come from one measurement from
the entire image (e.g. Image TotalIntensity), or which could be an
aggregate measurement based on individual object measurements (e.g. Image
MeanAreaCells). Use the appropriate substructure to ensure that your data
will be extracted properly.
The relationships between objects can also be defined. For

example, a nucleus might be associated with a particular cytoplasm
and therefore each nucleus has a cytoplasm’s number in the nucleus’
measurement field which links the two. Or, for multiple speckles
within a nucleus, each speckle will have a nucleus’ number
indicating which nucleus the speckle belongs to (see the Relate
module or Identify Secondary or Tertiary modules). Image
measurements include a few standard fields: ModuleErrorFeatures,
ModuleError, TimeElapsed, FileName_IMAGENAME, and
PathName_IMAGENAME. See note below for fields having to do with
file and path names.

Measurement storage was overhauled 2008-04-25 such that all modules
that record measurements must use the subfunction CPaddmeasurements. The
usage is:

handles = CPaddmeasurements(handles,ObjectName,FeatureName,Data);

This will create this data structure:

handles.Measurements.ObjectName.FeatureName = Data

where
-ObjectName is a single string denoting the name of the object, or
simply "Image" for image measurements

-FeatureName is a single string, with category and parameters
(optional) underscored, like this:

Category_SpecificFeatureName_Parameters

* Category = Module name (e.g., AreaShape), or useful category,
or nothing if there is no appropriate category (e.g., if
feature name = ObjectCount there is no category).
- Note: Do not include the word "Measure" when naming.
- Note: If you create a new category, be sure to add it to
the list of categories below, as well as in
CPgetfeaturenamesfromnumbers, and all choiceVAR lists so that
your new category will be selectable (in the future, this will
be a drop down menu) for modules that ask the user to
choose a category.

23

* SpecificFeatureName = specific feature recorded by a module
(e.g., Perimeter). Usually the module recording the
measurement assigns this name, but a few modules allow the
user to type in the name of the feature (e.g., the
CalculateRatios module allows the user to name the ratio).
- Note: Be sure to list the Specific features measured by
the module in the Help section. See MeasureObjectAreaShape
for an example.

* Parameters (optional) are used for modules that measure the
same objects in different ways (e.g. the
MeasureObjectIntensity module can measure intensities for
Nuclei in two different images, blue and green). Primarily
used for Channel or scale of Texture. Multiple parameters
can be separated by underscores.
(someday, CP will look at upstream modules and make dropdowns)

Category List:
These reflect choiceVAR lists in many modules, with their
necessary extra parameters:

No extra parameters:
AreaShape, Math

Image:
Imageintensity, Granularity, Children, Parent, AreaOccupied

SizeScale:
Neighbors

SizeScale and Image:
Texture and RadialDistribution

Not to include in choiceVAR lists:
Align, Ratio, ClassifyObjects, ClassifyObjsByTwoMeas,
ModuleError, Crop (though Crop could be added to the
Image group above if needed), DefinedGrid

When these categories are altered, please update the code in
CPgetfeaturenamesfromnumbers and any module that uses this
subfunction.

Note: CPjoinstrings can be helpful in constructing feature
names from strings and integers. (If you are just joining
strings, it is usually more convenient to join them
directly with [’texture_’, stringvariable], etc.)
Usage: CPjoinstrings(’texture’,42,’foo’) => ’texture_42_foo’

-Data is either:
(a) Nx1 vector of numerical data, one number per object where there
are N objects.
(b) [], i.e., the empty matrix if the module did not measure any
objects in this instance. YES, it is very important to pass the
empty matrix through CPaddmeasurements even if no objects were
found or measured for a particular image.
(c) A single string (only makes sense when the ObjectName =
"Image")
(d) In the future, we might add the capability to store Nx1
strings, i.e., one string for every object.

Be sure to consider whether measurements you are storing will overwrite

24

each other if more than one of the same module is placed in the pipeline.
You can differentiate measurements by including something specific in the
name (e.g. Intensity modules include the image name (e.g. Blue or Green)
in the substructure name). There are also several examples of modules
where new measures are appended to the end of an existing substructure
(i.e. forming a new column). See Calculate Ratios.

handles.Measurements: Order
Be certain that the order in which measurements are added correspond to
the Feature & FeatureNumber in each function’s Help section. This
FeatureNumber will correspond to the order of CPaddmeasurements
statements within each function. In the future, this will be superceded
by a more intelligent measurement selection system using context dependent
drop-down slectors.

%%%%
Why are file names stored in several places in the handles
structure? The Load Images module creates all of the following:
- handles.Pipeline.FileListIMAGENAME
- handles.Pipeline.Pathname
- handles.Pipeline.FilenameIMAGENAME
- handles.Measurements.Image.PathName_IMAGENAME
- handles.Measurements.Image.FileName_IMAGENAME
The primary reason for the fields in the Measurements branch is that
it allows the information to be exported easily. However, these
fields are also used elsewhere, e.g., the SaveImages module.
The FileList field is mainly useful for movies. For movies, the

FileList field has the original name of the movie file and how many
frames it contains. The Filenames field has the original movie file
name and appends the frame number for every frame in the movie. This
allows the names to be used in other modules such as SaveImages,
which would otherwise over-write itself on every cycle using the
original file name. The FileList location is created at the
beginning of the run and contains all the images that will possibly
be analyzed, whereas the Filename location is only populated as the
images cycle through.
When images are loaded from subdirectories, the information stored

in the Pipeline and Measurements branches become subtly different.
Let B be the base directory (either the default image directory or
the directory specified as an option to LoadImages). Suppose that N
image files are loaded from various subdirectories of B. Let Si be
the subdirectory of the i-th file loaded, and let Fi be its file
name. Then h.P.Pathname will be the string B; h.P.FilenameIMAGENAME
will be a cell array { ’S1/F1’, ’S2/F2’, ... };
h.M.I.PathName_IMAGENAME will be a cell array { ’B/S1’, ’B/S2’,
... }; and h.M.I.FileName_IMAGENAME will be a cell array { ’F1’,
’F2’, ... }.

Which substructures are deleted prior to an analysis run?
Anything stored in handles.Measurements or handles.Pipeline will be
deleted at the beginning of the analysis run, whereas anything stored in
handles.Settings, handles.Preferences, and handles.Current will be
retained from one analysis to the next. It is important to think about
which of these data should be deleted at the end of an analysis run

25

because of the way MATLAB saves variables: For example, a user might
process 12 image sets of nuclei which results in a set of 12 measurements
("TotalStainedArea") stored in handles.Measurements.Image. In addition, a
processed image of nuclei from the last image set is left in
handles.Pipeline.SegmentedNuclei. Now, if the user uses a different
module which happens to have the same measurement output name
"TotalStainedArea" to analyze 4 image sets, the 4 measurements will
overwrite the first 4 measurements of the previous analysis, but the
remaining 8 measurements will still be present. So, the user will end up
with 12 measurements from the 4 sets. Another potential problem is that
if, in the second analysis run, the user runs only a module which depends
on the output "SegmentedNuclei" but does not run a module that produces
an image by that name, the module will run just fine: it will just
repeatedly use the processed image of nuclei leftover from the last image
set, which was left in handles.Pipeline.

How do I save the handles structure in a GUI module?
Any changes you make to the handles structure are not kept from one
module to the next unless they are saved to the GUI first. This is done
in MATLAB by using the command guidata(gcbo,handles), where gcbo is a
function which identifies the CellProfiler window to the module. Since
the guidata command can only store one variable at a time, be sure to use
it on the handles structure only.

*** IMAGE ANALYSIS ***

If you plan to use the same function in two different m-files (e.g. a
module and a data tool, or two modules), it is helpful to write a
CPsubfunction called by both m-files so that you have only one
subfunction’s code to maintain if any changes are necessary.

Images loaded into CellProfiler are in the 0 to 1 range for consistency
across modules. When retrieving images into your module, you can check
the images for proper range, size, color/gray, etc using the
CPretrieveimage subfunction.

We have used many MATLAB functions from the image processing toolbox.
Currently, CellProfiler does not require any other toolboxes for
processing.

The ’drawnow’ function allows figure windows to be updated and buttons to
be pushed (like the pause, cancel, help, and view buttons). The
’drawnow’ function is sprinkled throughout the code so there are plenty
of breaks where the figure windows/buttons can be interacted with. This
does theoretically slow the computation somewhat, so it might be
reasonable to remove most of these lines when running jobs on a cluster
where speed is important.

*** ERROR HANDLING ***

* In data tools & image tools:
CPerrordlg([’Image processing was canceled in the ’,ModuleName,’

module because your entry ’,ValueX,’ was invalid.’])
return

26

* In modules and CPsubfunctions (no need for "return"):
error(’Your error message here.’)

* Note:
Always try to make the subfunctions as less likely to have errors as
possible. Whenever you can, have error checks in the calling function
before the subfunction gets called. Since CPsubfunctions use
error(’message’), you should try to nest any calls to them in a
try/catch. Plus, this allows you to add more specific information to the
error message (such as where in the calling function did the error
occur). To do this, you can just throw an error whose message has your
additional information together with lasterr (which retrieves the last
error message). In data tools and image tools CPerrordlg(’message’) and
return is needed because they are usually called independently, and using
error(’message’) would just stop execution, but would not prompt the user
with the corresponding error message.

*** DISPLAYING RESULTS ***

Each module checks whether its figure is open before calculating images
that are for display only. This is done by examining all the figure
handles for one whose handle is equal to the assigned figure number for
this algorithm. If the figure is not open, everything between the "if"
and "end" is ignored (to speed execution), so do not do any important
calculations there. Otherwise an error message will be produced if the
user has closed the window but you have attempted to access data that was
supposed to be produced by this part of the code. This is especially
problematic when running on a cluster of computers with no displays. If
you plan to save images which are normally produced for display only, the
corresponding lines should be moved outside this if statement. Also, any
additional uicontrols (popupmenus, pushbuttons) should be designed
using the unit of pixels, since this is standard across platforms unlike
other units such as inches and points.

STEP 1: Find the appropriate figure window. If it is closed, usually none
of the remaining steps are performed.
ThisModuleFigureNumber = handles.Current.([’FigureNumberForModule’,CurrentModule]);
if any(findobj == ThisModuleFigureNumber)

STEP 2: Activate the appropriate figure window so subsequent steps are
performed inside this window:
CPfigure(handles,’Image’,ThisModuleFigureNumber);

For figures that contain any images, choose ’Image’, otherwise choose
’Text’. ’Image’ figures will have the RGB checkboxes which allow
displaying individual channels, the InteractiveZoom and CellProfiler
Image Tools menu items, and the Raw/Stretched intensity scale pulldown.

Note: unfortunately there is no convenient way right now to have more
than one figure window per module. We work around this in the case of
IdPrimAutomatic when run in "test mode", for example, by creating a new
window with a special ’Tag’ property that allows you to find it again in
subsequent cycles. Having the ’Name’ property of the figure window
containing "cycle #" at the end allows CellProfiler to recognize it and

27

list it in the Windows menu.
Also note: In general, you should not change figure properties like this:
CPfigure(’Tag’, ’My figure name’)
...because it messes up the menus in the figure window. Use this instead:
set(FigureHandle,’Tag’,’My figure name’);

STEP 3: (only during starting image cycle) Make the figure the proper
size:
if handles.Current.SetBeingAnalyzed == handles.Current.StartingImageSet
CPresizefigure(’’,’NarrowText’,ThisModuleFigureNumber)

end
The figure is adjusted to fit the aspect ratio of the images, depending
on how many rows and columns of images should be displayed. The choices
are: OneByOne, TwoByOne, TwoByTwo, NarrowText. If a figure display is
unnecessary for the module, skip STEP 2 and here use:
if handles.Current.SetBeingAnalyzed == handles.Current.StartingImageSet
close(ThisModuleFigureNumber)

end
or simply use the subfunction:
CPclosefigure(handles,CurrentModule)

Note that in the above we do not use this:
if handles.Current.SetBeingAnalyzed == 1

... because if the user has chosen the Restart module to resume analysis,
the first image set being processed will not be #1, and yet we want the
figure window to be sized properly.

STEP 4: Display your image:
ImageHandle = CPimagesc(Image,handles);

This CPimagesc displays the image and also embeds an image tool bar which
will appear when you click on the displayed image. The handles are passed
in so the user’s preferences for font size and colormap are used.

*** DEBUGGING HINTS ***

* Use breakpoints in MATLAB to stop your code at certain points and
examine the intermediate results.

* To temporarily show an image during debugging, add lines like this to
your code, or type them at the command line of MATLAB:

CPfigure
CPimagesc(BlurredImage, [])
title(’BlurredImage’)

* To temporarily save an intermediate image during debugging, try this:
imwrite(BlurredImage, ’FileName.tif’, ’FileFormat’);

Note that you may have to alter the format of the image before
saving. If the image is not saved correctly, for example, try
adding the uint8 command:

imwrite(uint8(BlurredImage), ’FileName.tif’, ’FileFormat’);

* To routinely save images produced by this module, see the help in
the SaveImages module.

28

* If you want to save images that are produced by other modules but that
are not given an official name in the settings boxes for that module,
alter the code for the module to save those images to the handles
structure and then use the Save Images module.
The code should look like this:
fieldname = [’SomeDescription(optional)’,ImgOrObjNameFromSettingsBox];
handles.Pipeline.(fieldname) = ImageProducedBytheModule;
Example 1:
fieldname = [’Segmented’, ObjectName];
handles.Pipeline.(fieldname) = SegmentedObjectImage;
Example 2:
fieldname = CroppedImageName;
handles.Pipeline.(fieldname) = CroppedImage;

For General help files:
We have one line of actual code in these files so that the help is
visible. We are not using CPhelpdlg because using helpdlg instead allows
the help to be accessed from the command line of MATLAB. The one line of
code in each help file (helpdlg) is never run from inside CP anyway.

*** RUNNING CELLPROFILER WITHOUT THE GRAPHICAL USER INTERFACE ***

In order to run CellProfiler modules without the GUI you must have the
following variables:

handles.Settings.ModuleNames (for all modules in pipeline)
handles.Settings.VariableValues (for all modules in pipeline)
handles.Current.CurrentModuleNumber (must be consistent with pipeline)
handles.Current.SetBeingAnalyzed (must be consistent with pipeline)
handles.Current.FigureNumberForModuleXX (for all modules in pipeline)
handles.Current.NumberOfImageSets (set by LoadImages, so if it is run
first, you do not need to set it)
handles.Current.DefaultOutputDirectory
handles.Current.DefaultImageDirectory
handles.Current.NumberOfModules
handles.Preferences.IntensityColorMap (only used for display purposes)
handles.Preferences.LabelColorMap (only used for display purposes)
handles.Preferences.FontSize (only used for display purposes)

You will also need to have the CPsubfunctions folder, since our Modules
call CP subfunctions for many tasks. The CurrentModuleNumber needs to be
set correctly for each module in the pipeline since this is how the
variable values are called. In order to see what all of these variables
look like, run a sample analysis and then go to File -> Tech Diagnosis.
This will let you manipulate the handles variable in MATLAB.

29

CellProfiler Help: FastMode

Fast mode can be set in File > Set preferences.

If you uncheck the box you will run in diagnostic mode, where all the
intermediate images and calculations for the most recent image cycle are
saved in the output file, which drastically increases the output file
size. Check the box if you would instead like to run in normal (fast)
mode, producing smaller output files.

See also the SpeedUpCellProfiler module.

30

CellProfiler Help: MemoryAndSpeed

Help for memory and speed issues in CellProfiler:

There are several options in CellProfiler for dealing with out-of-memory
errors associated with analyzing images:

(1) Resize the input images
If the image is high-resolution, it may be helpful to determine
whether the features of interest can be processed (and accurate
data obtained) by using a lower-resolution image. If this is the
case, use the Resize module (under Image Processing) to scale down
the image to a more manageable size, and perform the desired
operations on the smaller image.

(2) Re-use the parameter names
Each image is associated with the unique name that you give it. If
you have many images, and many intermediate images created by the
modules you’ve added, the total space occupied by these images may cause
CellProfiler to run out of memory. In this case, a solution may be
to re-use names that you give to your parameters in later modules
in your pipeline.
For example, if you choose to resize your image and you know that you
don’t need the original image, you can give the resized image the same
name as the original. This will overwrite the original with the smaller,
resized image, thereby saving space.
Note: You must be certain that you have no use for the original image
later in the pipeline, since that data will be lost by this method.

(3) Running without display windows
When your images are being analyzed, the display windows created by
each module in your pipeline requires memory to create. If you are
not interested in seeing the intermediate output as it is produced,
you can deactivate the creation of display windows. Under File > Set
Preferences > Display Mode, you can specify which (if any) windows you
want displayed.
Note: The status and error windows will still be shown so you can see
the pipeline progress as your images are analyzed.

(4) Use the SpeedUpCellProfiler module.
The SpeedUpCellProfiler module permits the user to clear the images
stored in memory with the exception of those specified by the user.
Please see the help for the SpeedUpCellProfiler module for more details
and caveats.

In addition to these, there are other options within MATLAB and within
the operating system of your choice in order to maximize memory. See the
MATLAB product support page "Avoiding Out of Memory Errors"
(http://www.mathworks.com/support/tech-notes/1100/1107.html) for details.

Also, there are several options for speeding up the analysis of your
pipeline:
(1) Running without display windows

31

By setting the display mode under File > Set Preferences > Display
Mode, you can turn off the module display windows which gives a bit of
a gain in speed. Once your pipeline is properly set up, we recommend
running the entire cycle without any windows displayed.

(2) Use care in object identification
If you have a large image which contains a large number of small
objects, a good deal of computer time will be used in processing each
individual object, many of which you might not need. In this case, make
sure that you adjust the diameter options in IdentifyPrimAutomatic to
exclude small objects you are not interested in, or use a FilterObjects
module to eliminate objects that are not of interest.

32

CellProfiler Help: OutputFilename

Naming the output file:
Type in the text you want to use to name the output file, which is where
all of the information about the analysis as well as any measurements are
stored. ’OUT.mat’ will be added automatically at the end of whatever you
type in the box. The file will be saved in the default output directory
unless you type a full path and file name into the output file name box.
The path must not have spaces or characters disallowed by your platform.

The program prevents you from entering a name which exists already (when
’OUT.mat’ is appended). This prevents overwriting an output data file by
accident, but is also disallowed for the following reason: when a file is
’overwritten’, instead of completely overwriting the output file,
MATLAB/CellProfiler just replaces some of the old data with the new data.
So, if you have an output file with 12 measurements and the new set of
data has only 4 measurements, saving the output file to the same name
would produce a file with 12 measurements: the new 4 followed by 8 old
measurements.

33

CellProfiler Help: PixelSize

What is the pixel size? The pixel size is the number of micrometers per
pixel. This number is used to convert measurements to micrometers instead
of pixels, if you would like the size measurements to be scaled for your
images. By default, the pixel size is set to "1" which means that all
distance measurements will be in units of pixel lengths.

You can let CellProfiler convert pixel lengths to absolute units of
measure (microns (micrometers)) for you by changing the pixel size or you
can do the conversion yourself later. The default pixel size can be set
in File > Set preferences. Upon startup, the default preferences are
loaded or you can load preferences using File > Load Preferences. Either
way, the preference for pixel size will be shown in the main window of
CellProfiler. You can change the pixel size for the current session by
typing it into the main window of CellProfiler. This value is stored
along with any pipelines you save, so you can check what pixel size was
used in an old experiment by loading the pipeline from a pipeline file or
output file.

How do you know what value to use for the pixel size? The pixel size
depends on the resolution and binning of the camera and the magnification
of the objective lens of the microscope, in addition to the physical
setup of the microscope itself. You have two options: (1) check with the
microscope manufacturer or service person and ask them for a table of
pixel sizes for each possible combination of
resolution/binning/objectives for your scope, or (2) get a ’stage
micrometer’ (a glass slide with precise markings of distances) and take
pictures of it at all possible combinations of
resolution/binning/objectives for your scope. Once the pictures are
acquired, open them in CellProfiler, zoom in on them and take a look at
the markings on the slide relative to a single pixel in the image. Make a
table for yourself of the pixel size at each microscope/camera setting
for future reference.

Warning: some CellProfiler modules might currently ignore the pixel size
and produce data in pixel length units no matter what pixel size is set.
We are working to fix this.

34

CellProfiler Help: Preferences

File > Set Preferences: The default preferences file (CellProfilerPreferences.mat) is
loaded upon starting up CellProfiler and is located in the folder where the software is
running (or the MATLAB root in CellProfiler Developer’s version). If you do not have
permission to write files in that location, it saves the file in the current folder
(Developer’s version), but then the preferences will only be used when CellProfiler is
launched from that folder. If you do not have write permission in either location, save
them as personal preferences and use File > Load Preferences each time you start CellProfiler.

35

CellProfiler Help: SaveCurrentCellProfilerCode

File > Save Current CellProfiler code.

This is only to be used in CellProfiler Developer’s version.
It allows you to save all the Modules, DataTools, ImageTools and
CPsubfunctions at the current revision as a ZIP file. This file is then
placed in the default output directory.

36

CellProfiler Help: SkipErrors

Skip errors mode can be set in File > Set preferences.

This option will allow you to skip modules which have produced errors. If
a module fails, the pipeline will continue to run. To check if any
modules have failed, use Data Tools -> ExportData and be sure to export
the Image data. In the resulting Image file, there will be one
ModuleError field for each module. If any of these values are above 0,
that means the module failed at some point in the analysis.

37

CellProfiler Help: TechDiagnosis

Technical diagnosis mode is available using File > Tech Diagnosis.

This is only to be used in CellProfiler Developer’s version.
It allows you to access the workspace of CellProfiler directly at the
command line of MATLAB, including looking into the handles structure.

Type "return" at the command line of MATLAB to exit this mode.

38

Module: Align

Help for the Align module:
Category: Image Processing

SHORT DESCRIPTION:
Aligns images relative to each other.

For two or more input images, this module determines the optimal
alignment among them. Aligning images is useful to obtain proper
measurements of the intensities in one channel based on objects
identified in another channel, for example. Alignment is often needed
when the microscope is not perfectly calibrated. It can also be useful to
align images in a time-lapse series of images.

Some important notes for proper use of this module:
(1) Regardless of the number of input images, they will all be aligned
with respect to the first image.
(2) If desired, the images may be cropped according to the smallest input
image.
(3) If an image is aligned, the aligned image is padded with zeros.
(4) The module stores the amount of shift between images as a
measurement, which can be useful for quality control purposes.

Measured feature: Feature Number:
Xshift_Image1NamevsImage2Name | 1 (e.g., Xshift_BluevsRed)
Yshift_Image1NamevsImage2Name | 2 (e.g., Yshift_BluevsRed)
Xshift_Image2NamevsImage3Name | 3 (e.g., Xshift_RedvsGreen)
Yshift_Image2NamevsImage3Name | 4 (e.g., Yshift_RedvsGreen)
The latter two are measured only if three images are aligned.

Settings:
* "Mutual Information" method: alignment works whether the images are
correlated or anti-correlated (bright in one = bright in the other, or
bright in one = dim in the other).
* "Normalized Cross Correlation" method: alignment works only when the
images are correlated (they have matching bright and dark areas). When
using the cross correlation method, the second image should serve as a
template and be smaller than the first image selected.

39

40

Module: ApplyThreshold

Help for the Apply Threshold module:
Category: Image Processing

SHORT DESCRIPTION:
Pixel intensity below or above a certain threshold is set to zero.

Settings:

When a pixel is thresholded, its intensity value is set to zero so that
it appears black.

If you wish to threshold dim pixels, change the value for which "Pixels
below this value will be set to zero". In this case, the remaining pixels
can retain their original intensity values or are shifted dimmer to
match the threshold used.

If you wish to threshold bright pixels, change the value for which
"Pixels above this value will be set to zero". In this case, you can
expand the thresholding around them by entering the number of pixels to
expand here: This setting is useful to adjust when you are attempting to
exclude bright artifactual objects: you can first set the threshold to
exclude these bright objects, but it may also be desirable to expand the
thresholded region around those bright objects by a certain distance so
as to avoid a ’halo’ effect.

41

Module: CalculateImageOverlap

Help for the Calculate Image Overlap module:
Category: Measurement

SHORT DESCRIPTION:
This module takes two binary images, one defined as ground truth and
one the result of an algorithm, and finds the true positive, true
negative, false positive, and false negative areas. The F-factor is
calculated from these areas.

Settings:
"Which image represents the ground truth?" : This image is a binary (ie
masked) image in which user-identified objects are represented.
"Which image do you want to test against the ground truth?" : This image
is a binary (ie masked) image which is the result of some image
processing algorithm (either in CellProfiler or any image processing
software) that you would like to compare with the ground truth image.

The module calculates the overlap of the two image sets, and determines
the F-factor, a measure of the algorithm’s precision and recall.

Note: If you want to use the output of this module in a subsequesnt
calculation, we suggest you specify the output name rather than use
Automatic naming.

42

Module: CalculateMath

Help for the Calculate Math module:
Category: Measurement

SHORT DESCRIPTION:
This module can take measurements produced by previous modules and
performs basic arithmetic operations.

The arithmetic operations available in this module include addition,
subtraction, multiplication and division. The operation can be chosen
by adjusting the operations setting. The resulting data can also be
logged or raised to a power. This data can then be used in other
calculations and can be used in Classify Objects.

This module currently works on an object-by-object basis (it calculates
the requested operation for each object) but can also apply the operation
for measurements made for entire images.

Feature Number:
The feature number specifies which features from the Measure module(s)
will be used for the operation. See each Measure module’s help for the
numbered list of the features measured by that module.

Saving:
The math measurements are stored as ’Math_...’. If both measures are
image-based, then a single calculation (per cycle) will be stored as ’Image’ data.
If one measure is object-based and one image-based, then the calculations will
be stored associated with the object, one calculation per object. If both are
objects, then the calculations are stored with both objects.

Category: ’Math’
Features measured: Feature Number:
(As named in module’s last setting) | 1

Note: If you want to use the output of this module in a subsequesnt
calculation, we suggest you specify the output name rather than use
Automatic naming.

See also CalculateRatios, all Measure modules.

43

Module: CalculateStatistics

Help for the Calculate Statistics module:
Category: Measurement

SHORT DESCRIPTION:
Calculates measures of assay quality (V and Z’ factors) and dose response
data (EC50) for all measured features made from images.

The V and Z’ factors are statistical measures of assay quality and are
calculated for each per-cell and per-image measurement that you have made
in the pipeline. For example, the Z’ factor indicates how well-separated
the positive and negative controls are. Calculating these values by
placing this module at the end of a pipeline allows you to choose which
measured features are most powerful for distinguishing positive and
negative control samples, or for accurately quantifying the assay’s
response to dose. Both Z’ and V factors will be calculated for all
measured values (Intensity, AreaShape, Texture, etc.). These measurements
can be exported as the "Experiment" set of data.

For both Z’ and V factors, the highest possible value (best assay
quality) = 1 and they can range into negative values (for assays where
distinguishing between positive and negative controls is difficult or
impossible). A Z’ factor > 0 is potentially screenable; A Z’ factor > 0.5
is considered an excellent assay.

The Z’ factor is based only on positive and negative controls. The V
factor is based on an entire dose-response curve rather than on the
minimum and maximum responses. When there are only two doses in the assay
(positive and negative controls only), the V factor will equal the Z’
factor.

The one-tailed Z’ factor is an attempt to overcome the limitation of the
Z’-factor formulation used upon populations with moderate or high amounts
of skewness. In these cases, the tails opposite to the mid-range point
may lead to a high standard deviation for either population. This will
give a low Z’ factor even though the population means and samples between
the means are well-separated. Therefore, the one-tailed Z’factor is
calculated with the same formula but using only those samples that lie
between the population means.

NOTE: The statistical robustness of the one-tailed Z’ factor has not been
determined, and hence should probably not be used at this time.

NOTE: If the standard deviation of a measured feature is zero for a
particular set of samples (e.g. all the positive controls), the Z’ and V
factors will equal 1 despite the fact that this is not a useful feature
for the assay. This occurs when you have only one sample at each dose.
This also occurs for some non-informative measured features, like the
number of Cytoplasm compartments per Cell which is always equal to 1.

Features measured: Feature Number:

44

Zfactor | 1
Vfactor | 2
EC50 | 3
One-tailed Zfactor | 4

You must load a simple text file with one entry per cycle (using the Load
Text module) that tells this module either which samples are positive and
negative controls, or the concentrations of the sample-perturbing reagent
(e.g., drug dosage). This text file would look something like this:

[For the case where you have only positive or negative controls; in this
example the first three images are negative controls and the last three
are positive controls. They need not be labeled 0 and 1; the calculation
is based on whichever samples have minimum and maximum dose, so it would
work just as well to use -1 and 1, or indeed any pair of values:]
DESCRIPTION Doses
0
0
0
1
1
1

[For the case where you have samples of varying doses; using decimal
values:]
DESCRIPTION Doses
.0000001
.00000003
.00000001
.000000003
.000000001
(Note that in this example, the Z’ and V factors will be meaningless because
there is only one sample at the each dose, so the standard deviation of
measured features at each dose will be zero).

[Another example where you have samples of varying doses; this time using
exponential notation:]
DESCRIPTION Doses
10^-7
10^-7.523
10^-8
10^-8.523
10^-9

The reference for Z’ factor is: JH Zhang, TD Chung, et al. (1999) "A
simple statistical parameter for use in evaluation and validation of high
throughput screening assays." J Biomolecular Screening 4(2): 67-73.

The reference for V factor is: I Ravkin (2004): Poster #P12024 - Quality
Measures for Imaging-based Cellular Assays. Society for Biomolecular
Screening Annual Meeting Abstracts. This is likely to be published

45

Code for the calculation of Z’ and V factors was kindly donated by Ilya
Ravkin: http://www.ravkin.net

This module currently contains code copyrighted by Carlos Evangelista.

46

Module: ClassifyObjects

Help for the Classify Objects module:
Category: Object Processing

SHORT DESCRIPTION:
Classifies objects into different classes according to the value of a
measurement you choose.

This module classifies objects into a number of different bins
according to the value of a measurement (e.g. by size, intensity, shape).
It reports how many objects fall into each class as well as the
percentage of objects that fall into each class. The module requests that
you select the measurement feature to be used to classify your objects and
specify the bins to use. This module requires that you run a measurement
module previous to this module in the pipeline so that the measurement
values can be used to classify the objects. If you are classifying by the
ratio of two measurements, you must put a CalculateRatios module previous
to this module in the pipeline.

Settings:

Feature Number:
The feature number specifies which feature from the Measure module will
be used for classifying. See each Measure module’s help for the numbered
list of the features measured by that module.

TODO: IS THE FOLLOWING STILL TRUE?
If you are selecting Ratio, this is the order of ratio measurements that
you calculated, i.e. module order in pipeline. For instance, if you previously
calculated the ratio of Area to Perimeter for nuclei, MajorAxisLength to
MinorAxisLength for cells, and MeanIntensity to MaxIntensity for nuclei,
the value for the Area to Perimeter for nuclei would be 1, the value for
MajorAxisLength to MinorAxisLength for cells would be 2, and the value
for MeanIntensity to MaxIntensity for nuclei would be 3.

Saving:

Category = ’ClassifyObjects’
Features measured: Feature Number:
(As named in module’s last setting) | 1
TODO: What does that mean "As named in module’s last setting"?

See also ClassifyObjectsByTwoMeasurements, FilterByObjectMeasurement.

47

Module: ClassifyObjectsByTwoMeasurements

Help for the Classify Objects By Two Measurements module:
Category: Object Processing

SHORT DESCRIPTION:
Classifies objects into different classes according to the value of two
measurements of your choice.

This module classifies objects into four different classes according to
the value of two measurements of your choice (e.g. size, intensity,
shape). Choose the measurement features you want to use, and select a
threshold for each set of data (measurements). The objects will then be
separated in four classes: (1) objects whose first and second
measurements are both below the specified thresholds, (2) objects whose
first measurement is below the first threshold and whose second
measurement is above the second threshold, (3) the opposite of class 2,
and (4) objects whose first and second measurements are both above the
specified thresholds. You can give names to the class/bins, or leave the
default names of LowLow, LowHigh, HighLow, HighHigh. This module requires
that you run measurement modules previous to this module in the pipeline
so that the measurement values can be used to classify the objects.
Currently, classifying by the ratio of two measurements is unavailable.

Settings:

Feature Number:
The feature number specifies which feature from the Measure module will
be used for classifying. See each Measure module’s help for the numbered
list of the features measured by that module.

See also ClassifyObjects, FilterByObjectMeasurement.

48

Module: ColorToGray
Help for the Color To Gray module:
Category: Image Processing

SHORT DESCRIPTION:
Converts RGB (Red, Green, Blue) color images to grayscale. All channels
can be merged into one grayscale image (COMBINE option) or each channel
can be extracted into a separate grayscale image (SPLIT option).

Note: this module is especially helpful because all identify modules
require grayscale images.

Settings:

Split:
Takes a color image and splits the three channels (red, green, blue) into
three separate grayscale images.

Combine:
Takes a color image and converts it to grayscale by combining the three
channels (red, green, blue) together.

Adjustment factors: Leaving the adjustment factors set to 1 will balance
all three colors equally in the final image, which will use the same
range of intensities as the incoming image. To weight colors relative to
each other, the adjustment factor can be increased (to increase the
weighting) or decreased (to decrease the weighting).

See also GrayToColor.

49

Module: Combine

Help for the Combine module:
Category: Image Processing

SHORT DESCRIPTION:
Takes two or more images and combines them into one. Each image’s
contribution to the combined image can be adjusted independently.

This module combines input images into a new image that is the weighted
average of the input images’ pixel intensities. The average is found by
first multiplying each input image by its requested weight, adding up
those images, and dividing the result by the sum of the weights. By
taking the weighted average of the pixel intensities, the overall
intensity of the resulting image will remain in the same range as that of
the inputs.

The images to be combined must be either all grayscale or all color. If
you want to combine grayscale images to create a color image, see the
GrayToColor module. If you want to change an image’s overall intensity,
you should use the Rescale module.

Settings:

* Choosing the input images: The images that you would like to combine
must all be the same size, since the average will be taken pixel by
pixel. The input images must be all grayscale or all color.

* Weights: The weights will determine how much each input image will
contribute to the combined image. The higher the weight of an image, the
more it will be reflected in the combined image. Because of the way the
average is taken, it only matters how these weights relate to each other
(e.g. entering weights 0.25, 0.25, and 0.5 is the same as entering
weights 1, 1, and 2). The weights must be positive values.

See also: GrayToColor and Rescale

50

Module: ConvertToImage

Help for the Convert To Image module:
Category: Object Processing

SHORT DESCRIPTION:
Converts objects you have identified into an image so that it can be
saved with the Save Images module.

This module allows you to take previously identified objects and convert
them into an image, which can then be saved with the SaveImages modules.

Settings:

Binary (black & white), grayscale, or color: Choose how you would like
the objects to appear. Color allows you to choose a colormap which will
produce jumbled colors for your objects. Grayscale will give each object
a graylevel pixel intensity value corresponding to its number (also
called label), so it usually results in objects on the left side of the
image being very dark, and progressing towards white on the right side of
the image. You can choose "Color" with a "Gray" colormap to produce
jumbled gray objects.

Colormap:
Affect how the objects are colored. You can look up your default colormap
under File > Set Preferences. Look in matlab help online (try Google) to
see what the available colormaps look like. See also Help > HelpColormaps
in the main CellProfiler window.

51

Module: CorrectIlluminationApply

Help for the Correct Illumination Apply module:
Category: Image Processing

SHORT DESCRIPTION:
Applies an illumination function, created by
CorrectIllumination_Calculate, to an image in order to correct for uneven
illumination (uneven shading).

This module corrects for uneven illumination of each image. An
illumination function image that represents the variation in
illumination across the field of view is either made by a previous
module or loaded by a previous module in the pipeline. This module
then applies the illumination function to each image coming through
the pipeline to produce the corrected image.

Settings:

Divide or Subtract:
This module either divides each image by the illumination function,
or the illumination function is subtracted from each image. The
choice depends on how the illumination function was calculated and
on your physical model of how illumination variation affects the
background of images relative to the objects in images. If the
background is significant relative to the real signal coming from
cells (a somewhat empirical decision), then the Subtract option may be
preferable. If, in contrast, the signal to background ratio is quite
high (the cells are stained strongly), then the Divide option is
probably preferable. Typically, Subtract is used if the illumination
function was calculated using the background option in the
CORRECTILLUMINATION_CALCULATE module and divide is used if the
illumination function was calculated using the regular option.

Rescaling:
If subtracting the illumination function, any pixels that end up
negative are set to zero, so no rescaling of the corrected image is
necessary. If dividing, the resulting corrected image may be in a
very different range of intensity values relative to the original,
depending on the values of the illumination function. If you are not
rescaling, you should confirm that the illumination function is in a
reasonable range (e.g. 1 to some number), so that the resulting
image is in a reasonable range (0 to 1). Otherwise, you have two
options to rescale the resulting image: either stretch the image
so that the minimum is zero and the maximum is one, or match the
maximum of the corrected image to the the maximum of the original.
Either of these options has the potential to disturb the brightness
of images relative to other images in the set, so caution should be
used in interpreting intensity measurements from images that have
been rescaled. See the help for the Rescale Intensity module for details.

See also CorrectIllumination_Calculate, RescaleIntensity.

52

Module: CorrectIlluminationCalculate

Help for the Correct Illumination Calculate module:
Category: Image Processing

SHORT DESCRIPTION:
Calculates an illumination function, used to correct uneven
illumination/lighting/shading or to reduce uneven background in images.

This module calculates an illumination function which can be saved to the
hard drive for later use (you should save in .mat format using the Save
Images module), or it can be immediately applied to images later in the
pipeline (using the CorrectIllumination_Apply module). This will correct
for uneven illumination of each image.

Illumination correction is challenging and we are writing a paper on it
which should help clarify it (TR Jones, AE Carpenter, P Golland, in
preparation). In the meantime, please be patient in trying to understand
this module.

Settings:

* Regular or Background intensities?

Regular intensities:
If you have objects that are evenly dispersed across your image(s) and
cover most of the image, then you can choose Regular intensities. Regular
intensities makes the illumination function based on the intensity at
each pixel of the image (or group of images if you are in All mode) and
is most often rescaled (see below) and applied by division using
CorrectIllumination_Apply. Note that if you are in Each mode or using a
small set of images with few objects, there will be regions in the
average image that contain no objects and smoothing by median filtering
is unlikely to work well.
Note: it does not make sense to choose (Regular + no smoothing + Each)
because the illumination function would be identical to the original
image and applying it will yield a blank image. You either need to smooth
each image or you need to use All images.

Background intensities:
If you think that the background (dim points) between objects show the
same pattern of illumination as your objects of interest, you can choose
Background intensities. Background intensities finds the minimum pixel
intensities in blocks across the image (or group of images if you are in
All mode) and is most often applied by subtraction using the
CorrectIllumination_Apply module.
Note: if you will be using the Subtract option in the
CorrectIllumination_Apply module, you almost certainly do NOT want to
Rescale! See below!!

* Each or All?
Enter Each to calculate an illumination function for each image

53

individually, or enter All to calculate the illumination function from
all images at each pixel location. All is more robust, but depends on the
assumption that the illumination patterns are consistent across all the
images in the set and that the objects of interest are randomly
positioned within each image. Applying illumination correction on each
image individually may make intensity measures not directly comparable
across different images.

* Pipeline or Load Images?
If you choose Load Images, the module will calculate the illumination
correction function the first time through the pipeline by loading every
image of the type specified in the Load Images module. It is then
acceptable to use the resulting image later in the pipeline. If you
choose Pipeline, the module will allow the pipeline to cycle through all
of the cycles. With this option, the module does not need to follow a
Load Images module; it is acceptable to make the single, averaged image
from images resulting from other image processing steps in the pipeline.
However, the resulting average image will not be available until the last
cycle has been processed, so it cannot be used in subsequent modules
unless they are instructed to wait until the last cycle.

* Dilation:
For some applications, the incoming images are binary and each object
should be dilated with a gaussian filter in the final averaged
(projection) image. This is for a sophisticated method of illumination
correction where model objects are produced.

* Smoothing Method:
If requested, the resulting image is smoothed. See the help for the
Smooth module for more details. If you are using Each mode, this is
almost certainly necessary. If you have few objects in each image or a
small image set, you may want to smooth. The goal is to smooth to the
point where the illumination function resembles a believable pattern.
That is, if it is a lamp illumination problem you are trying to correct,
you would apply smoothing until you obtain a fairly smooth pattern
without sharp bright or dim regions. Note that smoothing is a
time-consuming process, and fitting a polynomial is fastest but does not
allow a very tight fit as compared to the slower median and gaussian
filtering methods. We typically recommend median vs. gaussian because
median
is less sensitive to outliers, although the results are also slightly
less smooth and the fact that images are in the range of 0 to 1 means that
outliers typically will not dominate too strongly anyway. A less commonly
used option is to *completely* smooth the entire image by choosing
"Smooth to average", which will create a flat, smooth image where every
pixel of the image is the average of what the illumination function would
otherwise have been.

* Approximate width of objects:
For certain smoothing methods, this will be used to calculate an adequate
filter size. If you don’t know the width of your objects, you can use the
ShowOrHidePixelData image tool to find out or leave the word ’Automatic’
to calculate a smoothing filter simply based on the size of the image.

54

Rescaling:
The illumination function can be rescaled so that the pixel intensities
are all equal to or greater than one. This is recommended if you plan to
use the division option in CorrectIllumination_Apply so that the
corrected images are in the range 0 to 1. It is NOT recommended if you
plan to use the Subtract option in CorrectIllumination_Apply! Note that
as a result of the illumination function being rescaled from 1 to
infinity, if there is substantial variation across the field of view, the
rescaling of each image might be dramatic, causing the corrected images
to be very dark.

See also Average, CorrectIllumination_Apply, and Smooth modules.

55

Module: CreateBatchFiles

Help for the Create Batch Files module:
Category: File Processing

SHORT DESCRIPTION:
Produces text files which allow individual batches of images to be
processed separately on a cluster of computers.

This module creates a set of files that can be submitted in parallel to a
cluster for faster processing. This module should be placed at the end of
an image processing pipeline.

Before using this module, you should read Help -> General Help ->
Batch Processing. That help file also will instruct you on how to
run the batch files that are created by this module.

Settings:
PATH TO BATCH_DATA.MAT FILE:
Choose either the Default Output Folder (".") or a path relative to it,
e.g. "./SaveToThisFolder"

Other Paths: The last two settings allow changing the paths between
local and cluster computers. For example, when starting with a local PC
computer and setting a batch to run on a Linux-based cluster,
the path may be essentially the same except the first notation:

PC: \\remoteserver1\cluster\project
Linux: /remoteserver2/cluster/project

In this case, for the local machine you would type "\\remoteserver1" and
for the remote machine you would type "/remoteserver2". As of now, this
is hardcoded to always use Linux and Macintosh style slashes (/).

If your input image folder and output folder are located on different
machines, you can specify the input image paths followed by the output
path separated by a comma.

Note: This module produces a Batch_data.mat file. This contains the
first image set’s measurements plus information about the processing
that each batch file needs access to in order to initialize the
processing. See the BatchRunner.py, CPCluster.py, and CPCluster.m
files for how this information is used. As many clusters use
different configurations for batch control, compiled versus
interpreted Matlab, access paths, etc. it will probably be necessary
to use those files as guides for a locally customized solution.
BatchRunner.py requires Python 2.5.2 and the module scipy 0.6 to be installed.

See also MergeOutputFiles, GSBatchProcessing.

56

Module: CreateWebPage

Help for the Create Web Page module:
Category: Other

SHORT DESCRIPTION:
Creates the html for a webpage to display images (or their thumbnails, if
desired), including a link to a zipped file with all of the included
images.

This module will create an html file that will display the specified
images and also produce a zip-file of these images with a link. The
thumbnail images must be in the same directory as the original images.

Settings:
* Thumbnails: By default, the full-size images will be displayed on the
webpage itself. If you have made thumbnails (small versions of the
images), you can have these displayed on the webpage, and the full-size
images will be displayed when the user clicks on the thumbnails.

* Create webpage (HTML file) before or after processing all images?
If the full-size images and thumbnails (optional) already exist on the
hard drive and you are loading them with the Load Images module, you can
answer "Before" to this question. If, however, you are producing either
of these images during the pipeline and you therefore need to complete
all of the cycles before generating the webpage, choose "After".

* What do you want to call the resulting webpage file (include .htm or
.html as the extension)?
This file will be created in your default output directory. It can then
be copied to your web server. The primary difference between .htm and
.html is simply that .html can’t be represented in a DOS/16 bit operating
system which uses the 8.3 file naming convention. Most servers (but not
all) that can handle 4 character file extensions can be set up to treat
.htm and .html files in exactly the same way, just as they can be set up
to treat .jpg and .jpeg files the same way.

* Will you have the webpage HTML file in the same folder or one level
above the images?
If the images are going to be in a subfolder, then the HTML file will be
one level above the images. If the HTML file and the images will all be
in the same folder, answer "Same as the images".

* Table border: If desired, there will be lines around each image,
creating a table. The thickness and color of these lines can be specified.

* Spacing between images: If this is set to greater than zero, there will
be an additional frame, the same color as the table border, around each
image. The spacing is the space between the frames that surrounds each
image.

* Image border width: This is the distance between each image and its

57

frame. If the spacing between images is zero, you will not see the frame
itself, but the image border width will still affect the spacing between
images.

58

Module: Crop

Help for the Crop module:
Category: Image Processing

SHORT DESCRIPTION:
Crops images into a rectangle, ellipse, an arbitrary shape provided by
the user, a shape identified by an identify module, or a shape used at a
previous step in the pipeline on another image.

Keep in mind that cropping changes the size of your images, which may
have unexpected consequences. For example, identifying objects in a
cropped image and then trying to measure their intensity in the
original image will not work because the two images are not the same
size.

Features measured: Feature Number:
AreaRetainedAfterCropping | 1
OriginalImageArea | 2

Settings:

Shape:
Rectangle - self-explanatory.
Ellipse - self-explanatory.
Other...
* To crop based on an object identified in a previous module, type in the
name of that identified object instead of Rectangle or Ellipse. Please
see PlateFix for information on cropping based on previously identified
plates.
* To crop into an arbitrary shape you define, use the LoadSingleImage
module to load a black and white image (that you have already prepared)
from a file. If you have created this image in an image program such as
Photoshop, this binary image should contain only the values 0 and 255,
with zeros (black) for the parts you want to remove and 255 (white) for
the parts you want to retain. Or, you may have previously generated a
binary image using this module (e.g. using the ellipse option) and saved
it using the SaveImages module (see Special note on saving images below).
In any case, the image must be the exact same starting size as your image
and should contain a contiguous block of white pixels, because keep in
mind that the cropping module will remove rows and columns that are
completely blank.
* To crop into the same shape as was used previously in the pipeline to
crop another image, type in CroppingPreviousCroppedImageName, where
PreviousCroppedImageName is the image you produced with the previous Crop
module.

Coordinate or mouse: For ellipse, you will be asked to click five or more
points to define an ellipse around the part of the image you want to
analyze. Keep in mind that the more points you click, the longer it will
take to calculate the ellipse shape. For rectangle, you can click as many

59

points as you like that are in the interior of the region you wish to
retain.

PlateFix: To be used only when cropping based on previously identified
objects. When attempting to crop based on a previously identified object
(such as a yeast plate), sometimes the identified plate does not have
precisely straight edges - there might be a tiny, almost unnoticeable
’appendage’ sticking out of the plate. Without plate fix, the crop
module would not crop the image tightly enough - it would include enough
of the image to retain even the tiny appendage, so there would be a lot
of blank space around the plate. This can cause problems with later
modules (especially IlluminationCorrection). PlateFix takes the
identified object and crops to exclude any minor appendages (technically,
any horizontal or vertical line where the object covers less than 50% of
the image). It also sets pixels around the edge of the object (for
regions > 50% but less than 100%) that otherwise would be zero to the
background pixel value of your image thus avoiding the problems with
other modules. Important note >> PlateFix uses the coordinates
entered in the boxes normally used for rectangle cropping (Top, Left) and
(Bottom, Right) to tighten the edges around your identified plate. This
is done because in the majority of plate identifications you do not want
to include the sides of the plate. If you would like the entire plate to
be shown, you should enter 1:end for both coordinates. If you would like
to crop 80 pixels from each edge of the plate, you could enter 80:end-80
for (Top, Left) and (Bottom, Right).

You have the option to remove rows and columns that are completely blank
- even if they are not at the edges of the image but internal.

Special note on saving images: See the help for the SaveImages module.
Also, you can save the cropping shape that you have used (e.g. an ellipse
you drew), so that in future analyses you can use the File option. To do
this, you need to add the prefix "Cropping" to the name you called the
cropped image (e.g. CroppingCropBlue) and this is the name of the image
you will want to save using the SaveImages module. I think you will want
to save it in mat format. You can also save the cropping shape, trimmed
for any unused rows and columns at the edges. This image has the prefix
"CropMask" plus the name you called the cropped image (e.g.
CropMaskCropBlue). This image is used for downstream modules that use
the CPgraythresh function. The Cropping and CropMask images are similar
(both are binary and contain the cropping shape you used), but the
Cropping image is the same size as the original images to be processed
whereas the CropMask image is the same size as the final, cropped image.

60

61

Module: DICTransform

Help for the DIC Transform module:
Category: Image Processing

SHORT DESCRIPTION:
Transforms a DIC image to more readily enable object identification.

**

Typically, identifying objects with algorithms like those in
CellProfiler’s "Identify" modules does not work well for DIC images
because the interior of each object has similar intensity values as the
background. This module provides several algorithms for transforming a
DIC image to enhance the brightness of objects relative to the
background.

Settings:

* Transformation methods: Several options are provided. For most DIC
images, the line integration and the energy minimization algorithms
perform the best. For objects that are heavily textured (e.g., mice
embryos), a simple normally weighted variance filter is usually more
helpful.

* Shear axis: Direction along which the "shadow" of the objects appears
to lie.

62

Module: DefineGrid

Help for the Define Grid module:
Category: Other

SHORT DESCRIPTION:
Produces a grid of desired specifications either manually, or
automatically based on previously identified objects. The grid can then
be used to make measurements (using Identify Objects in Grid) or to
display text information (using Display Grid Info) within each
compartment of the grid.

This module defines the location of a grid that can be used by modules
downstream. When used in combination with IdentifyObjectsInGrid, it
allows the measurement of the size, shape, intensity and texture of each
object in a grid. The grid is defined by the location of marker spots
(control spots) in the grid, which are either indicated manually or are
found automatically using previous modules in the pipeline.

If you are using images of plastic plates, it may be useful to precede
this module with an IdentifyPrimAutomatic module to find the plastic
plate, followed by a Crop module to remove the plastic edges of the
plate, so that the grid can be defined within the smooth portion of the
plate only. If the plates are not centered in exactly the same position
from one image to the next, this allows the plates to be identified
automatically and then cropped so that the interior of the plates, upon
which the grids will be defined, are always in precise alignment with
each other.

Features measured: Feature Number:
XLocationOfLowestXSpot | 1
YLocationOfLowestYSpot | 2
XSpacing | 3
YSpacing | 4
Rows | 5
Columns | 6
TotalHeight | 7
TotalWidth | 8
LeftOrRightNum | 9 (left = 1, right = 0)
TopOrBottomNum | 10 (top = 1, bottom = 0)
RowsOrColumnsNum | 11 (rows = 1, columns = 1)
The last three are related to the questions the module ask you about the
grid.

Settings: Most are self-explanatory.

EACH CYCLE or ONCE: If all of your images are perfectly aligned with each
other (due to very consistent image acquisition, consistent grid location
within the plate, and/or automatic cropping precisely within each plate),
you can define the location of the marker spots ONCE for all of the image
cycles; if the location of the grid will vary from one image cycle to the

63

next then you should define the location of the marker spots for EACH
CYCLE independently.

MANUAL mode: In MANUAL mode, you manually indicate known locations of
marker spots in the grid and have the rest of the positions calculated
from those marks, no matter what the image itself looks like. This mode
requires manually clicking on a marker spot with the MOUSE for each image
(if it is not visible you have to click where it ought to be). Or, you
can type in the pixel COORDINATES of the marker spots. DISTANCE from the
control spot to the top left corner of the grid: If the marker spot you
have chosen to use is the top left corner spot of the grid, then specify
0,0. As another example, if the control spot is in the same row as the
grid and is one spot distance to the left of the grid, you could specify
that the spot is -1,0 spot units away from the top left spot. You can
also us marker spots that are within the grid. For example, if the 3rd
row, 3rd column spot is the one you choose to be the marker spot because
it is always present in images, then you would enter 3,3.

AUTOMATIC mode: If you would like the grid to be defined automatically,
an IdentifyPrimAutomatic module must be run prior to this module to
identify the objects which will be used to define the grid. The
left-most, right-most, top-most, and bottom-most object will be used to
define the edges of the grid and the rows and columns will be evenly
spaced between these edges. Note that automatic mode requires that the
incoming objects are nicely defined - for example, if there is an object
at the edge of the images that is not really an object that ought to be
in the grid, a skewed grid will result. You might wish to use a
FilterByObjectMeasurement module to clean up badly identified objects
prior to defining the grid. If the spots are slightly out of alignment
with each other from one image cycle to the next, this allows the
identification to be a bit flexible and adapt to the real location of the
spots.

SAVING IMAGES: You can save the grid and numbering produced by this
module as a color image, on top of the original image. You can then save
this image using the SaveImages module or use the ColorToGray module to
separate out the color of interest to combine with other images as
desired.

See also IdentifyObjectsInGrid, DisplayGridInfo.

64

Module: DifferentiateStains

Help for the Differentiate Stains module
Category: Image Processing

SHORT DESCRIPTION:
Outputs two intensity images for each of two stains

This module produces two intensity images representing the amount of
each of two different stains minus the background staining. It models
the intensity for each color X as:

(1 - S1(x)*Q1 - S2(x)*Q2) = I(x)

where x is the red, green and blue channel
S1(x) is related to the absorbance of stain 1 for color x
Q1 is the quantity of stain 1 at the pixel

and similarly for the second stain.

The module asks the user to pick two cells stained with each of the
two stains (or one cell with one stain and the other with both stains)
and a point that represents the background staining. The colors of these
three points give the color values used to determine intensities.

There are two modes of color differentiation, cooperative and competitive.
Cooperative:
In cooperative mode, the intensity of the image for one stain is
decreased by the amount that the color is like the other stain and vice-
versa. A particular pixel can have quantities of both stains.

Competitive:
In competitive mode, the module computes a vector in colorspace between
the colors of stains 1 and 2, finds background values for the two stains
and then for each pixel, computes the magnitude of the pixel’s color
in the direction of the vector, subtracting the background value
for the stain to normalize. The mode is competitive in that the measured
amount of stain # 1 has the opposite sign (before subtracting background)
from stain # 2 and a pixel is generally either assigned stain # 1’s or
stain # 2’s color.

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 7193 $

65

Module: DisplayDataOnImage

Help for the Display Data on Image module:
Category: Other

SHORT DESCRIPTION:
Produces an image with measured data on top of identified objects.

The resulting images with data on top can be saved using the Save Images
module.

Feature Number:
The feature number specifies which feature from the Measure module will
be used for display. See each Measure module’s help for the numbered
list of the features measured by that module.

See also MeasureObjectAreaShape, MeasureImageAreaOccupied,
MeasureObjectIntensity, MeasureImageIntensity, MeasureTexture,
MeasureCorrelation, MeasureObjectNeighbors, and CalculateRatios modules.

66

Module: DisplayGridInfo

Help for the Display Grid Information module:
Category: Other

SHORT DESCRIPTION:
Displays text information on grid (i.e. gene names).

This module will display text information in a grid pattern. It requires
that you define a grid earlier in the pipeline using the DefineGrid
module and also load text information using the LoadText module. This
module allows you to load multiple sets of text data. The different sets
can be displayed in different colors. The text information must have the
same number of entries as there are grid locations (grid squares).

See also DefineGrid and LoadText.

67

Module: DisplayHistogram

Help for the Display Histogram module:
Category: Other

SHORT DESCRIPTION:
Produces a histogram of measurements.

The resulting histograms can be saved using the Save Images module.

Feature Number:
The feature number specifies which feature from the Measure module will
be used for the histogram. See each Measure module’s help for the
numbered list of the features measured by that module.

Frequency counts:
Frequency counts refers to the threshold for the leftmost and rightmost
bins. The minimum value is the threshold at which any measurements less
than this value will be combined into the leftmost bin. The maximum value
is the threshold at which any measurements greater than or equal to this
value will be combined into the rightmosot bin.

Absolute vs. Percentage
Choose "Numbers" if you want the histogram bins to contain the actual
numbers of objects in the bin. Choose "Percents" if you want the
histogram bins to contain the percentage of objects in the bin.

See also DisplayImageHistogram, MeasureObjectAreaShape,
MeasureObjectIntensity, MeasureTexture, MeasureCorrelation,
MeasureObjectNeighbors, CalculateRatios.

68

Module: DisplayImageHistogram

Help for the Display Image Histogram module:
Category: Other

SHORT DESCRIPTION:
Produces a histogram of the intensity of pixels within an image.

This module creates a histogram that shows the pixel intensity of the
input image. The histogram can then be saved using the SaveImages module.

Settings:

How many histograms bins would you like to use?
Choose how many bins to use (i.e. in how many sets do you want the data
distributed).

Frequency counts:
Frequency counts refers to the threshold for the leftmost and rightmost
bins. The minimum value is the threshold at which any measurements less
than this value will be combined into the leftmost bin. The maximum value
is the threshold at which any measurements greater than or equal to this
value will be combined into the rightmosot bin.

See also DisplayHistogram, MeasureObjectAreaShape,
MeasureObjectIntensity, MeasureTexture, MeasureCorrelation,
MeasureObjectNeighbors, and CalculateRatios modules.

69

Module: DisplayMeasurement

Help for the Display Measurement module:
Category: Other

SHORT DESCRIPTION:
Plots measured data in several formats.

The DisplayMeasurement module allows data generated from the previous
modules to be displayed on a plot. In the Settings, the type of the plot
can be specified. The data can be displayed in a bar, line, or scatter
plot. The user must choose the category of the data set to plot or, the
user may choose to plot a ratio of two data sets. The scatterplot
requires additional information about the second set of measurements
used.

The resulting plots can be saved using the Save Images module.

Feature Number:
The feature number specifies which feature from the Measure module will
be used for plotting. See each Measure module’s help for the numbered
list of the features measured by that module.

See also MeasureObjectAreaShape, MeasureObjectIntensity, MeasureTexture,
MeasureCorrelation, MeasureObjectNeighbors, CalculateRatios.

70

Module: EditObjectsManually

Help for the Edit Objects Manually module:
Category: Object Processing

SHORT DESCRIPTION:
User interface for removing objects manually from an image

This module allows you to remove objects through a user interface. The
module displays three images: the objects as originally segmented,
the objects that have not been removed and the objects that have been
removed.
If you click on an object in the "not removed" image, it moves to the
"removed" image and will be removed. If you click on an object in the
"removed" image, it moves to the "not removed" image and will not be
removed. If you click on an object in the original image, it will
toggle its "removed" state.

The pipeline pauses once per processed image when it reaches this module.
You have to press the continue button to accept the selected objects
and continue the pipeline.

See also FilterByObjectMeasurement, Exclude, OverlayOutlines, ConvertToImage.

71

Module: Exclude

Help for the Exclude Objects module:
Category: Object Processing

SHORT DESCRIPTION:
Removes objects outside of specified region.

This image analysis module allows you to delete the objects and portions
of objects that are outside of a region you specify (e.g. nuclei outside
of a tissue region). The objects and the region should both result from
any Identify module (Primary, Secondary, or Tertiary).

Retain or renumber:
Retaining objects’ original numbers might be important if you intend to
correlate measurements made on the remaining objects with measurements
made on the original objects. Note that retaining original numbers will
produce gaps in the numbered list of objects (since some objects no
longer exist). This may cause errors with certain exporting tools or with
downstream modules that expect object numbers to not have gaps.
Renumbering, on the other hand, makes the output file more compact, the
processing quicker, and is also guaranteed to work with exporting and
data analysis tools.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module Overlay Outlines and then
saved with the Save Images module. Objects themselves can be passed along
to the object processing module Convert To Image and then saved with the
Save Images module. This module produces several additional types of
objects with names that are automatically passed along with the following
naming structure: (1) The unedited segmented image, which includes
objects on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range can be
saved using the name: SmallRemovedSegmented + whatever you called the
objects (e.g. SmallRemovedSegmented Nuclei).

Another note on filtering objects: The Exclude module will not exclude
whole objects that are overlapping with the specified region. To handle
this, you can convert the region to a binary image, then use
MeasureObjectIntensity on the objects but based on the binary image. This
will essentially count the number of region pixels within each object,
which will be non-zero if there is any overlap of the object with the
region of interest. Using FilterByObjectMeasurement based on a fraction
of the integrated intensity can then be applied to exclude overlapping
objects. We will probably include this procedure as an option in the
next release.

See also FilterByObjectMeasurement, OverlayOutlines, ConvertToImage.

72

Module: ExpandOrShrink

Help for the Expand Or Shrink module:
Category: Object Processing

SHORT DESCRIPTION:
Expands or shrinks identified objects by a defined distance.

The module expands or shrinks objects by adding or removing border
pixels. The user can specify a certain number of border pixels to be
added or removed, or use ’Inf’ to expand objects until they are almost
touching or to shrink objects down to a point. Objects are never lost
using this module (shrinking stops when an object becomes a single
pixel). An experimental feature is able to allow shrinking with secondary
objects - it adds partial dividing lines between objects which are
touching before the shrinking step so it is not perfect. It would be nice
to improve this code to draw complete dividing lines, but we have only
implemented a partial fix.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module OverlayOutlines and then saved
with the SaveImages module. Objects themselves can be passed along to the
object processing module ConvertToImage and then saved with the
SaveImages module.

This module produces several additional types of objects with names
that are automatically passed along with the following naming
structure: (1) The unedited segmented image, which includes objects
on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range
can be saved using the name: SmallRemovedSegmented + whatever you
called the objects (e.g. SmallRemovedSegmented Nuclei).

See also IdentifyPrimAutomatic, IdentifyPrimManual, IdentifySecondary.

73

74

Module: ExportToDatabase

Help for the Export To Database module:
Category: File Processing

SHORT DESCRIPTION:
Exports data in database readable format, including an importing file
with column names and a CellProfiler Analyst properties file, if desired.

This module exports measurements to a SQL compatible format. It creates
MySQL or Oracle scripts and associated data files which will create a
database and import the data into it and gives you the option of creating
a properties file for use with CellProfiler Analyst.

This module must be run at the end of a pipeline, or second to last if
you are using the CreateBatchFiles module. If you forget this module, you
can also run the ExportDatabase data tool after processing is complete;
its functionality is the same.

The database is set up with two primary tables. These tables are the
Per_Image table and the Per_Object table (which may have a prefix if you
specify). The Per_Image table consists of all the Image measurements and
the Mean and Standard Deviation of the object measurements. There is one
Per_Image row for every image. The Per_Object table contains all the
measurements for individual objects. There is one row of object
measurements per object identified. The two tables are connected with the
primary key column ImageNumber. The Per_Object table has another primary
key called ObjectNumber, which is unique per image.

The Oracle database has an extra table called Column_Names. This table is
necessary because Oracle has the unfortunate limitation of not being able
to handle column names longer than 32 characters. Since we must
distinguish many different objects and measurements, our column names are
very long. This required us to create a separate table which contains a
short name and corresponding long name. The short name is simply "col"
with an attached number, such as "col1" "col2" "col3" etc. The short name
has a corresponding long name such as "Nuclei_AreaShape_Area". Each of
the Per_Image and Per_Object columnnames are loaded as their "short name"
but the long name can be determined from the Column_Names table.

Settings:

Database Type:
You can choose to export MySQL or Oracle database scripts. The exported
data is the same for each type, but the setup files for MySQL and Oracle
are different.

Database Name:
In MySQL, you can enter the name of a database to create or the name of

an existing database. When using the script, if the database already
exists, the database creation step will be skipped so the existing
database will not be overwritten but new tables will be added. Do be

75

careful, however, in choosing the Table Prefix. If you use an existing
table name, you might unintentionally overwrite the data in that table.
In Oracle, when you log in you must choose a database to work with, so

there is no need to specify the database name in this module. This also
means it is impossible to create/destroy a database with these
CellProfiler scripts.

Table Prefix:
Here you can choose what to append to the table names Per_Image and
Per_Object. If you choose "Do not use", no prefix will be appended. If you choose
a prefix, the tables will become PREFIX_Per_Image and PREFIX_Per_Object
in the database. If you are using the same database for all of your
experiments, the table prefix is necessary and will be the only way to
distinguish different experiments. If you are creating a new database for
every experiment, then it may be easier to keep the generic Per_Image and
Per_Object table names. Be careful when choosing the table prefix, since
you may unintentionally overwrite existing tables.

Do you want to create a Per_Well table?:
To create a Per_Well table, you need to have a FileNameMetadata module in
your pipeline which extracts the Plate (if applicable) and Well metadata
from the filename and/or pathname. You then need to specify here in
ExportToDatabase what these tokens were called (though they are by
default Plate & Well, which corresponds to
the default in FilenNameMetadata). If instead you had labeled your
’plate’ as <Barcode> in FileNameMetadata, here you would select ’Other’
and specify Barcode in response to ’Which token
uniquely specifies your Plate?’

SQL File Prefix: All the CSV files will start with this prefix.

Create a CellProfiler Analyst properties file: Generate a template
properties for using your new database in CellProfiler Analyst (a data
exploration tool which can also be downloaded from
http://www.cellprofiler.org/)

If creating a properties file for use with CellProfiler Analyst (CPA):
The module will attempt to fill in as many as the entries as possible
based on the current handles structure. However, entries such as the
server name, username and password are omitted. Hence, opening the
properties file in CPA will produce an error since it won’t be able to
connect to the server. However, you can still edit the file in CPA and
then fill in the required information.

********************* How To Import MySQL *******************************
Step 1: Log onto the server where the database will be located.

Step 2: From within a terminal logged into that server, navigate to folder
where the CSV output files and the SETUP script is located.

Step 3: Type the following within the terminal to log into MySQL on the
server where the database will be located:

mysql -uUsername -pPassword -hHost

76

Step 4: Type the following within the terminal to run SETUP script:
\. DefaultDB_SETUP.SQL

The SETUP file will do everything necessary to load the database.

********************* How To Import Oracle ******************************
Step 1: Using a terminal, navigate to folder where the CSV output files
and the SETUP script is located.

Step 2: Log into SQLPlus: "sqlplus USERNAME/PASSWORD@DATABASESCRIPT"
You may need to ask your IT department the name of DATABASESCRIPT.

Step 3: Run SETUP script: "@DefaultDB_SETUP.SQL"

Step 4: Exit SQLPlus: "exit"

Step 5: Load data files (for columnames, images, and objects):

sqlldr USERNAME/PASSWORD@DATABASESCRIPT control=DefaultDB_LOADCOLUMNS.CTL
sqlldr USERNAME/PASSWORD@DATABASESCRIPT control=DefaultDB_LOADIMAGE.CTL
sqlldr USERNAME/PASSWORD@DATABASESCRIPT control=DefaultDB_LOADOBJECT.CTL

Step 6: Log into SQLPlus: "sqlplus USERNAME/PASSWORD@DATABASESCRIPT"

Step 7: Run FINISH script: "@DefaultDB_FINISH.SQL"

Technical note: This module calls the CPconvertsql function to do the
actual exporting, which is same function as called by the ExportDatabase
data tool.

See also: CreateBatchFiles, ExportDatabase data tool.

77

Module: ExportToExcel

Help for the ExportToExcel module:
Category: File Processing

SHORT DESCRIPTION:
Exports measurements into a tab-delimited text file which can be opened
in Excel or other spreadsheet programs.

Note: this module is beta-version and has not been thoroughly checked.

The data will be converted to a tab-delimited text file which can be read
by Excel, another spreadsheet program, or a text editor. The file is
stored in the default output folder.

This module performs the same function as the data tool, Export Data.
Please refer to the help for ExportData for more details.

Settings:

Enter the directory where the Excel files are to be saved.
If you used the FileNameMetadata module, metadata tokens may be used
here. If the directory does not exist, it will be created.

What prefix should be used to name the Excel files?
Here you can choose what to prepend to the output file. If you choose
"Do not use", the output filename will be prepended. If you choose
a prefix, the file will become PREFIX_<ObjectName>.xls. If you used
FileNameMetadata, metadata tokens may be used here.

78

Module: FileNameMetadata

Help for the File Name Metadata module:
Category: Measurement

SHORT DESCRIPTION:
Captures metadata such as plate name, well column and well row from
the filename of an image file.

This module uses regular expressions to capture metadata such as
plate name, and well position from an image’s file name. The captured
metadata is stored in the image’s measurements under the "Metadata"
category.

Variables:
What did you call the image?

This is the name entered in LoadImages. This module will use the
file name of this image as the source of its metadata.

Enter the regular expression to use to capture the fields:
The regular expression syntax can be used to name different parts
of your expression. The syntax for this is (?<FIELDNAME>expr) to
extract whatever matches "expr" and assign it to the measurement,
FIELDNAME for the image.
For instance, a researcher uses plate names composed of two
capital letters followed by five numbers, then appends the
well name to this, separated by an underbar: "TE12345_A05.tif"
The following regular expression will capture the plate, well
row and well column in the fields, "Plate","WellRow" and "WellCol":

^(?<Plate>[A-Z]{2}[0-9]{5})_(?<WellRow>[A-H])(?<WellCol>[0-9]+)
1 2 3 4 5 6 7 8 9

1. "^" Only start at beginning of the file name
2. "(?<Plate>" Name the captured field, "Plate"
3. "[A-Z]{2} First, capture exactly two letters between A and Z
4. "[0-9]{5} Also capture exactly five digits
5. "_" Discard the underbar separating plate from well
6. "(?<WellRow>" Name the captured field, "WellRow"
7. "[A-H]" Capture exactly one letter between A and H
8. "(?<WellCol>" Name the captured field, "WellCol"
9. "[0-9]+" Capture as many digits as follow

When entering fields for the pathname, because slashs are platform-
dependdent and are escape characters in regexp, you can use ’[\\/]’ to
capture both slashes or use a vertical line (’|’) as shorthand
to separate the direcrories, like this:
(?<rootdir>)|(?<subdir1>)|(?<subdir2>)....

For instance, if an experimental run is given a unique directory name,
the following expression will capture the directory name from the path:
.*|(?<Run>.*)$ or .*[\\/](?<Run>.*)$

This captures the immediate directory containing the image file in the
token "Run", ignoring earlier directories in the path.

79

If you want to group the images according to a set of tokens, enter the
fields here, separated by commas. Type "Do not use" to ignore.
If you want to group image files by a particular regexp token field,
enter the fields (not the tokens) you want to group by
here. For example, using the above examples, entering "Run, Plate" will
create groups containing images that share the same Run and the same
Plate fields. This is especially useful if you want to group all plates
together for an illumination correction calculation, rather than running
the correction pipeline on each directory containing a plate separately.

To use the grouping functionality, you must place this module immediately
after any LoadImage modules and before any subsequent modules that might
make use of tokens.

See also LoadImages module for regular expression format

80

Module: FilterByObjectMeasurement

Help for the Filter by Object Measurement module:
Category: Object Processing

SHORT DESCRIPTION:
Eliminates objects based on their measurements (e.g. area, shape,
texture, intensity).

This module removes objects based on their measurements produced by
another module (e.g. MeasureObjectAreaShape, MeasureObjectIntensity,
MeasureTexture). All objects outside of the specified parameters will be
discarded.

Feature Number or Name:
The feature number specifies which feature from the Measure module will
be used for filtering. See each Measure module’s help for the numbered
list of the features measured by that module. Additionally, you can
specify the Feature Name explicitly, which is useful in special cases
such as filtering by Location, which is created by a few modules, and
has a Feature Name of either ’X’ or ’Y’.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module OverlayOutlines and then saved
with the SaveImages module. Objects themselves can be passed along to the
object processing module ConvertToImage and then saved with the
SaveImages module. This module produces several additional types of
objects with names that are automatically passed along with the following
naming structure: (1) The unedited segmented image, which includes
objects on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range can be
saved using the name: SmallRemovedSegmented + whatever you called the
objects (e.g. SmallRemovedSegmented Nuclei).

See also MeasureObjectAreaShape, MeasureObjectIntensity, MeasureTexture,
MeasureCorrelation, CalculateRatios, and MeasureObjectNeighbors modules.

81

Module: FindEdges

Help for the Find Edges module:
Category: Image Processing

SHORT DESCRIPTION:
Identifies edges in an image, which can be used as the basis for object
identification or other downstream image processing.

This module finds the edges of objects in a grayscale image, usually
producing a binary (black and white) image where the edges are white and
the background is black. The ratio method can optionally produce a
grayscale image where the strongest edges are brighter and the smoothest
parts of the image are darker. It works best when the objects of interest
are black and the background is white.

Settings:

Threshold: Enter the desired threshold or have CellProfiler calculate one
automatically. The methods use different processes to calculate the
automatic threshold.

Threshold Adjustment Factor: This value will be multiplied by the
threshold (the numerical value you entered, or the automatically
calculated one if desired) used for edge detection.

Method: There are several methods that can be used to identify edges:
Ratio Method - This method first applies two smoothing filters to the

image (sum of squares and square of sums), and then
takes the ratio of the two resulting images to determine
the edges. The filter size is then very important in
this method. The larger the filter size, the thicker the
edges will be. The recommended size is 8 pixels, or
roughly half the width of the objects you wish to edge.
This method is taken from CJ Cronin, JE Mendel, S
Mukhtar, Y-M Kim, RC Stirbl, J Bruck and PW Sternberg,
An automated system for measuring parameters of nematode
sinusoidal movement, BMC Genetics, 6:5, 2005 available
here: http://www.biomedcentral.com/1471-2156/6/5

Sobel Method - finds edges using the Sobel approximation to the
derivative. It returns edges at those points where the
gradient of the image is maximum.

Prewitt Method - finds edges using the Prewitt approximation to the
derivative. It returns edges at those points where the
gradient of the image is maximum.

Roberts Method - finds edges using the Roberts approximation to the
derivative. It returns edges at those points where the
gradient of the image is maximum.

LoG Method - This method first applies a Laplacian of Gaussian filter
to the image and then finds zero crossings.

Canny Method - The Canny method finds edges by looking for local maxima
of the gradient of the image. The gradient is calculated

82

using the derivative of a Gaussian filter. The method
uses two thresholds, to detect strong and weak edges,
and includes the weak edges in the output only if they
are connected to strong edges. This method is therefore
less likely than the others to be fooled by noise, and
more likely to detect true weak edges.

Size of smoothing filter (for Ratio method only): A square of NxN will be used for the filter, where N is the size you
specify here. See method description above for further information.

Binary or Grayscale (for Ratio method only): The image produced by this
module can be grayscale (varying shaed of gray) or binary (black and
white). The choice depends on what you intend to use the resulting image
for.

Edge Thinning (for Sobel and Roberts methods): If thinning is selected,
edges found will be thinned out into a line (if possible). Specifying the
’nothinning’ option can speed up the operation of the algorithm by
skipping the additional edge thinning stage.

Direction (for Sobel and Prewitt methods): It gives you the option of
identifying all edges, or just those that are predominantly horizontal or
vertical.

Sigma (LoG and Canny): Standard deviation of the gaussian filter

83

Module: FlagImageForQC

Help for the Flag Image for QC (quality control) module:
Category: Image Processing

SHORT DESCRIPTION:
This module allows you to flag an image if it fails some quality control
measurement you specify.

This module allows the user to assign a flag (a per-image measurement) if
an image fails some quality control measurement the user specifies. The
value of the measurement is ’1’ if the image has failed QC, and ’0’ if it
has passed. The flag can be used in post-processing to filter out images
the user does not want to analyze in CP Analyst, for example, or in
creating an illumination function (currently, this is only possible using LoadImageDirectory).

To flag an image by more than one measurement, you can use multiple
’FlagImageForQC’ modules and select, ’Append an existing flag’ and enter
the name of the flag you want to append.

By default, the measurements you are using to flag an image are
measurements from that image.

This module requires the measurement modules be placed prior to this
module in the pipeline.

See also FlagImageByMeasurement data tool.

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 6876 $

84

Module: FlipAndRotate

Help for the FlipAndRotate module:
Category: Image Processing

SHORT DESCRIPTION:
Flips (mirror image) and rotates an image.

Features measured: Feature Number:
Rotation | 1
(this is the angle of rotation)

Settings:

Rotation method:
*Coordinates - you can provide the X,Y pixel locations of two
points in the image which should be aligned horizontally or vertically.
*Mouse - you can click on points in the image which should be aligned
horizontally or vertically.
*Angle - you can provide the numerical angle by which the image should be
rotated.

Would you like to crop away the rotated edges?
When an image is rotated, there will be black space at the corners/edges
unless you choose to crop away the incomplete rows and columns of the
image. This cropping will produce an image that is not the exact same
size as the original, which may affect downstream modules.

See also Crop.

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 8408 $

85

Module: GrayToColor
Help for the Gray To Color module:
Category: Image Processing

SHORT DESCRIPTION:
Takes 1 to 4 images and assigns them to colors in a final red, green,
blue (RGB) image. Each color’s brightness can be adjusted independently.

This module takes up to four grayscale images as inputs, and produces
either a new color (RGB) image which results from assigning each of the
input images the colors red, green, and blue (RGB, for 3 color) or cyan,
yellow, magenta, and gray (CMYK, for 4 color) respectively.
In addition, each color’s intensity can be adjusted independently by
using adjustment factors (see below).

Settings:

Choose the input images: You must select at least one image which you
would like to use to create the color image. Also, all images must be the
same size, since they will combined pixel by pixel.

Adjustment factors: Leaving the adjustment factors set to 1 will balance
all colors equally in the final image, and they will use the same range
of intensities as each individual incoming image. Using factors less than
1 will decrease the intensity of that color in the final image, and
values greater than 1 will increase it. Setting the adjustment factor
to zero will cause that color to be entirely blank.

See also ColorToGray.

86

Module: GroupMovieFrames

Help for the GroupMovieFrames module:
Category: File Processing

SHORT DESCRIPTION:

GroupMovieFrames handle a movie to group movie frames to be processed
within a cycle. The position of a frame within a group can be specified
with its ImageName to be used downstream.

Each loaded movie frame will be treated as an individual image with its
own ImageName.

87

Module: IdentifyObjectsInGrid

Help for the Identify Objects In Grid module:
Category: Object Processing

SHORT DESCRIPTION:
Identifies objects within each section of a grid that has been defined by
the DefineGrid module.

This module identifies objects that are in a grid pattern which allows
you to measure the objects using measure modules. It requires that you
create a grid in an earlier module using the DefineGrid module.

Settings:

For several of the automatic options, you will need to tell the module
what you called previously identified objects. Typically, you roughly
identify objects of interest in a previous Identify module, and the
locations and/or shapes of these rough objects are refined in this
module. Within this module, objects are re-numbered according to the grid
definitions rather than their original numbering from the original
Identify module. For the Natural Shape option, if an object does not
exist within a grid compartment, an object consisting of one single pixel
in the middle of the grid square will be created. Also, for the Natural
Shape option, if a grid compartment contains two partial objects, they
will be combined together as a single object.

If placing the objects within the grid is impossible for some reason (the
grid compartments are too close together to fit the proper sized circles,
for example) the grid will fail and processing will be canceled unless
you choose to re-use any previous grid or the first grid in the in the
image cycle.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module OverlayOutlines and then
saved with the SaveImages module. Objects themselves can be passed along
to the object processing module ConvertToImage and then saved with the
SaveImages module. This module produces several additional types of
objects with names that are automatically passed along with the following
naming structure: (1) The unedited segmented image, which includes
objects on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range can be
saved using the name: SmallRemovedSegmented + whatever you called the
objects (e.g. SmallRemovedSegmented Nuclei).

See also DefineGrid.

88

Module: IdentifyPrimAutomatic

Help for the Identify Primary Automatic module:
Category: Object Processing

SHORT DESCRIPTION:
Identifies objects given only an image as input.

This module identifies primary objects (e.g. nuclei) in grayscale images
that show bright objects on a dark background. The module has many
options which vary in terms of speed and sophistication. The objects that
are found are displayed with arbitrary colors - the colors do not mean
anything but simply help you to tell various objects apart. You can
change the colormap in File > Set Preferences.

Requirements for the images to be fed into this module:
* If the objects are dark on a light background, they must first be
inverted using the Invert Intensity module.
* If you are working with color images, they must first be converted to
grayscale using the Color To Gray module.

Overview of the strategy (’Settings’ below has more details):
Properly identifying primary objects (nuclei) that are well-dispersed,

non-confluent, and bright relative to the background is straightforward
by applying a simple threshold to the image. This is fast but usually
fails when nuclei are touching. In CellProfiler, several automatic
thresholding methods are available, including global and adaptive, using
Otsu’s (Otsu, 1979) and our own version of a Mixture of Gaussians
algorithm (O. Friman, unpublished). For most biological images, at least
some nuclei are touching, so CellProfiler contains a novel modular
three-step strategy based on previously published algorithms (Malpica et
al., 1997; Meyer and Beucher, 1990; Ortiz de Solorzano et al., 1999;
Wahlby, 2003; Wahlby et al., 2004). Choosing different options for each
of these three steps allows CellProfiler to flexibly analyze a variety of
different cell types. Here are the three steps:
In step 1, CellProfiler determines whether an object is an individual

nucleus or two or more clumped nuclei. This determination can be
accomplished in two ways, depending on the cell type: When nuclei are
bright in the middle and dimmer towards the edges (the most common case),
identifying local maxima in the smoothed intensity image works well
(Intensity option). When nuclei are quite round, identifying local maxima
in the distance-transformed thresholded image (where each pixel gets a
value equal to the distance to the nearest pixel below a certain
threshold) works well (Shape option). For quick processing where cells
are well-dispersed, you can choose to make no attempt to separate clumped
objects.
In step 2, the edges of nuclei are identified. For nuclei within the

image that do not appear to touch, the edges are easily determined using
thresholding. For nuclei that do appear to touch, there are two options
for finding the edges of clumped nuclei. Where the dividing lines tend to
be dimmer than the remainder of the nucleus (the most common case), the
Intensity option works best (already identified nuclear markers are

89

starting points for a watershed algorithm (Vincent and Soille, 1991)
applied to the original image). When no dim dividing lines exist, the
Distance option places the dividing line at a point between the two
nuclei determined by their shape (the distance-transformed thresholded
image is used for the watershed algorithm). In other words, the dividing
line is usually placed where indentations occur along the edge of the
clumped nuclei.
In step 3, some identified nuclei are discarded or merged together if

the user chooses. Incomplete nuclei touching the border of the image can
be discarded. Objects smaller than a user-specified size range, which are
likely to be fragments of real nuclei, can be discarded. Alternately, any
of these small objects that touch a valid nucleus can be merged together
based on a set of heuristic rules; for example similarity in intensity
and statistics of the two objects. A separate module,
FilterByObjectMeasurement, further refines the identified nuclei, if
desired, by excluding objects that are a particular size, shape,
intensity, or texture. This refining step could eventually be extended to
include other quality-control filters, e.g. a second watershed on the
distance transformed image to break up remaining clusters (Wahlby et al.,
2004).

For more details, see the Settings section below and also the notation
within the code itself (Developer’s version).

Malpica, N., de Solorzano, C. O., Vaquero, J. J., Santos, A., Vallcorba,
I., Garcia-Sagredo, J. M., and del Pozo, F. (1997). Applying watershed
algorithms to the segmentation of clustered nuclei. Cytometry 28,
289-297.
Meyer, F., and Beucher, S. (1990). Morphological segmentation. J Visual
Communication and Image Representation 1, 21-46.
Ortiz de Solorzano, C., Rodriguez, E. G., Jones, A., Pinkel, D., Gray, J.
W., Sudar, D., and Lockett, S. J. (1999). Segmentation of confocal
microscope images of cell nuclei in thick tissue sections. Journal of
Microscopy-Oxford 193, 212-226.
Wahlby, C. (2003) Algorithms for applied digital image cytometry, Ph.D.,
Uppsala University, Uppsala.
Wahlby, C., Sintorn, I. M., Erlandsson, F., Borgefors, G., and Bengtsson,
E. (2004). Combining intensity, edge and shape information for 2D and 3D
segmentation of cell nuclei in tissue sections. J Microsc 215, 67-76.

Settings:

Typical diameter of objects, in pixel units (Min,Max):
This is a very important parameter which tells the module what you are
looking for. Most options within this module use this estimate of the
size range of the objects in order to distinguish them from noise in the
image. For example, for some of the identification methods, the smoothing
applied to the image is based on the minimum size of the objects. A comma
should be placed between the minimum and the maximum diameters. The units
here are pixels so that it is easy to zoom in on objects and determine
typical diameters. To measure distances easily, use the CellProfiler
Image Tool, ’ShowOrHidePixelData’, in any open window. Once this tool is
activated, you can draw a line across objects in your image and the
length of the line will be shown in pixel units. Note that for non-round

90

objects, the diameter here is actually the ’equivalent diameter’, meaning
the diameter of a circle with the same area as the object.

Discard objects outside the diameter range:
You can choose to discard objects outside the specified range of
diameters. This allows you to exclude small objects (e.g. dust, noise,
and debris) or large objects (e.g. clumps) if desired. See also the
FilterByObjectMeasurement module to further discard objects based on some
other measurement. During processing, the window for this module will
show that objects outlined in green were acceptable, objects outlined in
red were discarded based on their size, and objects outlined in yellow
were discarded because they touch the border.

Try to merge ’too small’ objects with nearby larger objects:
Use caution when choosing ’Yes’ for this option! This is an experimental
functionality that takes objects that were discarded because they were
smaller than the specified Minimum diameter and tries to merge them with
other surrounding objects. This is helpful in cases when an object was
incorrectly split into two objects, one of which is actually just a tiny
piece of the larger object. However, this could be dangerous if you have
selected poor settings which produce many tiny objects - the module
will take a very long time and you will not realize that it is because
the tiny objects are being merged. It is therefore a good idea to run the
module first without merging objects to make sure the settings are
reasonably effective.

Discard objects touching the border of the image:
You can choose to discard objects that touch the border of the image.
This is useful in cases when you do not want to make measurements of
objects that are not fully within the field of view (because, for
example, the area would not be accurate).

Select automatic thresholding method:
The threshold affects the stringency of the lines between the objects

and the background. You can have the threshold automatically calculated
using several methods, or you can enter an absolute number between 0 and
1 for the threshold (to see the pixel intensities for your images in the
appropriate range of 0 to 1, use the CellProfiler Image Tool,
’ShowOrHidePixelData’, in a window showing your image). There are
advantages either way. An absolute number treats every image identically,
but is not robust to slight changes in lighting/staining conditions
between images. An automatically calculated threshold adapts to changes
in lighting/staining conditions between images and is usually more
robust/accurate, but it can occasionally produce a poor threshold for
unusual/artifactual images. It also takes a small amount of time to
calculate.

The threshold which is used for each image is recorded as a
measurement in the output file, so if you find unusual measurements from
one of your images, you might check whether the automatically calculated
threshold was unusually high or low compared to the other images.

There are five methods for finding thresholds automatically, Otsu’s
method, the Mixture of Gaussian (MoG) method, the Background method, the
Robust Background method and the Ridler-Calvard method.
** The Otsu method

91

uses our version of the Matlab function graythresh (the code is in the
CellProfiler subfunction CPthreshold). Our modifications include taking
into account the max and min values in the image and log-transforming the
image prior to calculating the threshold. Otsu’s method is probably best
if you don’t know anything about the image, or if the percent of the
image covered by objects varies substantially from image to image. If you
know the object coverage percentage and it does not vary much from image
to image, the MoG can be better, especially if the coverage percentage is
not near 50%. Note, however, that the MoG function is experimental and
has not been thoroughly validated.
** The Background method
is simple and appropriate for images in which most of the image is
background. It finds the mode of the histogram of the image, which is
assumed to be the background of the image, and chooses a threshold at
twice that value (which you can adjust with a Threshold Correction Factor,
see below). Note that the mode is protected from a high number of
saturated pixels by only counting pixels < 0.95. This can be very helpful,
for example, if your images vary in overall brightness but the objects of
interest are always twice (or actually, any constant) as bright as the
background of the image.
** The Robust background
method trims the brightest and dimmest 5% of pixel intensities off first
in the hopes that the remaining pixels represent a gaussian of intensity
values that are mostly background pixels. It then calculates the mean and
standard deviation of the remaining pixels and calculates the threshold
as the mean + 2 times the standard deviation.
** The Ridler-Calvard method
is simple and its results are often very similar to Otsu’s - according to
Sezgin and Sankur’s paper (Journal of Electronic Imaging 2004), Otsu’s
overall quality on testing 40 nondestructive testing images is slightly
better than Ridler’s (Average error - Otsu: 0.318, Ridler: 0.401).
It chooses an initial threshold, and then iteratively calculates the next
one by taking the mean of the average intensities of the background and
foreground pixels determined by the first threshold, repeating this until
the threshold converges.
** The Kapur method
computes the threshold of an image by
log-transforming its values, then searching for the threshold that
maximizes the sum of entropies of the foreground and background
pixel values, when treated as separate distributions.

You can also choose between Global, Adaptive, and Per object
thresholding:
Global: one threshold is used for the entire image (fast).
Adaptive: the threshold varies across the image - a bit slower but
provides more accurate edge determination which may help to separate
clumps, especially if you are not using a clump-separation method (see
below).
Per object: if you are using this module to find child objects located
within parent objects, the per object method will calculate a distinct
threshold for each parent object. This is especially helpful, for
example, when the background brightness varies substantially among the
parent objects. Important: the per object method requires that you run an
IdentifyPrim module to identify the parent objects upstream in the
pipeline. After the parent objects are identified in the pipeline, you

92

must then also run a Crop module as follows: the image to be cropped is
the one
that you will want to use within this module to identify the children
objects (e.g., ChildrenStainedImage), and the shape in which to crop
is the name of the parent objects (e.g., Nuclei). Then, set this
IdentifyPrimAutomatic module to identify objects within the
CroppedChildrenStainedImage.

Threshold correction factor:
When the threshold is calculated automatically, it may consistently be
too stringent or too lenient. You may need to enter an adjustment factor
which you empirically determine is suitable for your images. The number 1
means no adjustment, 0 to 1 makes the threshold more lenient and greater
than 1 (e.g. 1.3) makes the threshold more stringent. For example, the
Otsu automatic thresholding inherently assumes that 50% of the image is
covered by objects. If a larger percentage of the image is covered, the
Otsu method will give a slightly biased threshold that may have to be
corrected using a threshold correction factor.

Lower and upper bounds on threshold:
Can be used as a safety precaution when the threshold is calculated
automatically. For example, if there are no objects in the field of view,
the automatic threshold will be unreasonably low. In such cases, the
lower bound you enter here will override the automatic threshold.

Approximate percentage of image covered by objects:
An estimate of how much of the image is covered with objects. This
information is currently only used in the MoG (Mixture of Gaussian)
thresholding but may be used for other thresholding methods in the future
(see below).

Method to distinguish clumped objects:
Note: to choose between these methods, you can try test mode (see the
last setting for this module).
* Intensity - For objects that tend to have only one peak of brightness
per object (e.g. objects that are brighter towards their interiors), this
option counts each intensity peak as a separate object. The objects can
be any shape, so they need not be round and uniform in size as would be
required for a distance-based module. The module is more successful when
the objects have a smooth texture. By default, the image is automatically
blurred to attempt to achieve appropriate smoothness (see blur option),
but overriding the default value can improve the outcome on
lumpy-textured objects. Technical description: Object centers are defined
as local intensity maxima.
* Shape - For cases when there are definite indentations separating
objects. This works best for objects that are round. The intensity
patterns in the original image are irrelevant - the image is converted to
black and white (binary) and the shape is what determines whether clumped
objects will be distinguished. Therefore, the cells need not be brighter
towards the interior as is required for the Intensity option. The
de-clumping results of this method are affected by the thresholding
method you choose. Technical description: The binary thresholded image is
distance-transformed and object centers are defined as peaks in this
image.

93

* Do not use (fastest option) - If objects are far apart and are very well
separated, it may be unnecessary to attempt to separate clumped objects.
Using the ’Do not use’ option, a simple threshold will be used to identify
objects. This will override any declumping method chosen in the next
question.

Method to draw dividing lines between clumped objects:
* Intensity - works best where the dividing lines between clumped
objects are dim. Technical description: watershed on the intensity image.
* Distance - Dividing lines between clumped objects are based on the
shape of the clump. For example, when a clump contains two objects, the
dividing line will be placed where indentations occur between the two
nuclei. The intensity patterns in the original image are irrelevant - the
cells need not be dimmer along the lines between clumped objects.
Technical description: watershed on the distance-transformed thresholded
image.
* Do not use (fastest option) - If objects are far apart and are very well
separated, it may be unnecessary to attempt to separate clumped objects.
Using the ’Do not use’ option, the thresholded image will be used to identify
objects. This will override any declumping method chosen in the above
question.

Size of smoothing filter, in pixel units:
(Only used when distinguishing between clumped objects) This setting,

along with the suppress local maxima setting, affects whether objects
close to each other are considered a single object or multiple objects.
It does not affect the dividing lines between an object and the
background. If you see too many objects merged that ought to be separate,
the value should be lower. If you see too many objects split up that
ought to be merged, the value should be higher.

The image is smoothed based on the specified minimum object diameter
that you have entered, but you may want to override the automatically
calculated value here. Reducing the texture of objects by increasing the
smoothing increases the chance that each real, distinct object has only
one peak of intensity but also increases the chance that two distinct
objects will be recognized as only one object. Note that increasing the
size of the smoothing filter increases the processing time exponentially.

Suppress local maxima within this distance (a positive integer, in pixel
units):

(Only used when distinguishing between clumped objects) This setting,
along with the size of the smoothing filter, affects whether objects
close to each other are considered a single object or multiple objects.
It does not affect the dividing lines between an object and the
background. This setting looks for the maximum intensity in the size
specified by the user. The local intensity histogram is smoothed to
remove the peaks within that distance. So,if you see too many objects
merged that ought to be separate, the value should be lower. If you see
too many objects split up that ought to be merged, the value should be higher.

Object markers are suppressed based on the specified minimum object
diameter that you have entered, but you may want to override the
automatically calculated value here. The maxima suppression distance
should be set to be roughly equivalent to the minimum radius of a real

94

object of interest. Basically, any distinct ’objects’ which are found but
are within two times this distance from each other will be assumed to be
actually two lumpy parts of the same object, and they will be merged.

Speed up by using lower-resolution image to find local maxima?
(Only used when distinguishing between clumped objects) If you have
entered a minimum object diameter of 10 or less, setting this option to
Yes will have no effect.

Technical notes: The initial step of identifying local maxima is
performed on the user-controlled heavily smoothed image, the
foreground/background is done on a hard-coded slightly smoothed image,
and the dividing lines between clumped objects (watershed) is done on the
non-smoothed image.

Laplacian of Gaussian method:
This is a specialized method to find objects and will override the above
settings in this module. The code was kindly donated by Zach Perlman and
was used in this published work:
Multidimensional drug profiling by automated microscopy.
Science. 2004 Nov 12;306(5699):1194-8. PMID: 15539606
Regrettably, we have no further description of its variables.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module OverlayOutlines and then saved
with the SaveImages module. Objects themselves can be passed along to the
object processing module ConvertToImage and then saved with the
SaveImages module. This module produces several additional types of
objects with names that are automatically passed along with the following
naming structure: (1) The unedited segmented image, which includes
objects on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range can be
saved using the name: SmallRemovedSegmented + whatever you called the
objects (e.g. SmallRemovedSegmented Nuclei).

See also IdentifyPrimManual, IdentifySecondary.

95

Module: IdentifyPrimLoG

Help for the Identify Primary LoG module:
Category: Object Processing

SHORT DESCRIPTION:

Identifies the centers of blob-like primary objects. The result
consists of only a single pixel per object, located near the center
of the object.

This module identifies the centers of blob-like primary objects
(e.g. nuclei) in grayscale images that show bright objects on a dark
background. When the objects of interest are fairly round and of
even size, this module may be more sensitive than the methods in
IdentifyPrimAutomatic and therefore detect objects that would
otherwise be lost.

The result consists of only a single pixel per object, located near
the center of the object; the IdentifySecondary module can be used
to fill out the object based on this center point.

SETTINGS:

The radius parameter should be set to the approximate radius of the
objects of interest. The algorithm is not very sensitive to this
parameter.

The threshold parameter informs the algorithm how inclusive to be when
looking for objects. Internally, each potential object is assigned
a score that depends on both how bright the object is and how
blob-like its shape is. Only objects that score above the threshold
are returned. If the thresold is too high, objects will be lost;
if it is too low, spurious objects will be found. The threshold
can be determined experimentally, but the ’Automatic’ setting
will make a guess using RobustBackground Global’s thresholding
method on the transformed image. RobustBackground is useful because it
makes little assumption of the intensity histogram, and thus
can be protective against out-of-focus or empty images. If you want the
threshold to be consistent across images, then you can use the threshold found by
the ’Automatic’ setting as a starting point for manual threshold input adjustment.
Also, if the threshold is consistently high or low, then you can adjust
by a multiplicative correction factor by inserting it after a comma, e.g.
"Automatic,1.5".

ALGORITHM DETAILS:

The module works by convolving the image with the Laplacian of
Gaussian (LoG) kernel. This is equivalent to convolving with the
Gaussian kernel and then with the Laplace operator. The regional
maxima in the filter response that exceed the specificed threshold

96

are identified as objects. The radius parameter specifies the width
of the kernel.

Ultimately, this module will become an option in
IdentifyPrimAutomatic, so that its options for maxima suppression
and finding edges between clumps can be used.

$Revision: 7941 $

97

Module: IdentifyPrimManual

Help for the Identify Primary Manual module:
Category: Object Processing

SHORT DESCRIPTION:
Identifies an object based on manual intervention (clicking) by the user.

This module allows the user to identify objects by manually outlining
them. This is done by using the mouse to click multiple points around
the object. Multiple objects can be outlined using this module.

Special note on saving images: Using the settings in this module, object
outlines can be passed along to the module OverlayOutlines and then saved
with the SaveImages module. Objects themselves can be passed along to the
object processing module ConvertToImage and then saved with the
SaveImages module. This module produces several additional types of
objects with names that are automatically passed along with the following
naming structure: (1) The unedited segmented image, which includes
objects on the edge of the image and objects that are outside the size
range, can be saved using the name: UneditedSegmented + whatever you
called the objects (e.g. UneditedSegmentedNuclei). (2) The segmented
image which excludes objects smaller than your selected size range can be
saved using the name: SmallRemovedSegmented + whatever you called the
objects (e.g. SmallRemovedSegmented Nuclei).

See also IdentifyPrimAutomatic.

98

Module: IdentifySecondary

Help for the Identify Secondary module:
Category: Object Processing

SHORT DESCRIPTION:
Identifies objects (e.g. cell edges) using "seed" objects identified by
an Identify Primary module (e.g. nuclei).

This module identifies secondary objects (e.g. cell edges) based on two
inputs: (1) a previous module’s identification of primary objects (e.g.
nuclei) and (2) an image stained for the secondary objects (not required
for the Distance - N option). Each primary object is assumed to be completely
within a secondary object (e.g. nuclei are completely within cells
stained for actin).

It accomplishes two tasks:
(a) finding the dividing lines between secondary objects which touch each
other. Three methods are available: Propagation, Watershed (an older
version of Propagation), and Distance.
(b) finding the dividing lines between the secondary objects and the
background of the image. This is done by thresholding the image stained
for secondary objects, except when using Distance - N.

Settings:

Methods to identify secondary objects:
* Propagation - For task (a), this method will find dividing lines
between clumped objects where the image stained for secondary objects
shows a change in staining (i.e. either a dimmer or a brighter line).
Smoother lines work better, but unlike the watershed method, small gaps
are tolerated. This method is considered an improvement on the
traditional watershed method. The dividing lines between objects are
determined by a combination of the distance to the nearest primary object
and intensity gradients. This algorithm uses local image similarity to
guide the location of boundaries between cells. Boundaries are
preferentially placed where the image’s local appearance changes
perpendicularly to the boundary. Reference: TR Jones, AE Carpenter, P
Golland (2005) Voronoi-Based Segmentation of Cells on Image Manifolds,
ICCV Workshop on Computer Vision for Biomedical Image Applications, pp.
535-543. For task (b), thresholding is used.

* Watershed - For task (a), this method will find dividing lines between
objects by looking for dim lines between objects. For task (b),
thresholding is used. Reference: Vincent, Luc, and Pierre Soille,
"Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion
Simulations," IEEE Transactions of Pattern Analysis and Machine
Intelligence, Vol. 13, No. 6, June 1991, pp. 583-598.

* Distance - This method is bit unusual because the edges of the primary
objects are expanded a specified distance to create the secondary
objects. For example, if nuclei are labeled but there is no stain to help

99

locate cell edges, the nuclei can simply be expanded in order to estimate
the cell’s location. This is often called the ’doughnut’ or ’annulus’ or
’ring’ approach for identifying the cytoplasmic compartment. Using the
Distance - N method, the image of the secondary staining is not used at
all, and these expanded objects are the final secondary objects. Using
the Distance - B method, thresholding is used to eliminate background
regions from the secondary objects. This allows the extent of the
secondary objects to be limited to a certain distance away from the edge
of the primary objects.

Select automatic thresholding method or enter an absolute threshold:
The threshold affects the stringency of the lines between the objects

and the background. See the help for the IdentifyPrimAutomatic module for
a complete description of the options. Per object methods may be used for
cases where the secondary object is completely contained within a
second primary object, perhaps making a per-object threshold preferable
for determining the secondary object boudanries.

Threshold correction factor:
When the threshold is calculated automatically, it may consistently be
too stringent or too lenient. You may need to enter an adjustment factor
which you empirically determine is suitable for your images. The number 1
means no adjustment, 0 to 1 makes the threshold more lenient and greater
than 1 (e.g. 1.3) makes the threshold more stringent. For example, the
Otsu automatic thresholding inherently assumes that 50% of the image is
covered by objects. If a larger percentage of the image is covered, the
Otsu method will give a slightly biased threshold that may have to be
corrected using a threshold correction factor.

Lower and upper bounds on threshold:
Can be used as a safety precaution when the threshold is calculated
automatically. For example, if there are no objects in the field of view,
the automatic threshold will be unreasonably low. In such cases, the
lower bound you enter here will override the automatic threshold.

Approximate percentage of image covered by objects:
An estimate of how much of the image is covered with objects. This
information is currently only used in the MoG (Mixture of Gaussian)
thresholding but may be used for other thresholding methods in the future
(see below).

Regularization factor (for propagation method only):
This method takes two factors into account when deciding where to draw
the dividing line between two touching secondary objects: the distance to
the nearest primary object, and the intensity of the secondary object
image. The regularization factor controls the balance between these two
considerations: A value of zero means that the distance to the nearest
primary object is ignored and the decision is made entirely on the
intensity gradient between the two competing primary objects. Larger
values weight the distance between the two values more and more heavily.
The regularization factor can be infinitely large, but around 10 or so,
the intensity image is almost completely ignored and the dividing line
will simply be halfway between the two competing primary objects.

100

Note: Primary identify modules produce two (hidden) output images that
are used by this module. The Segmented image contains the final, edited
primary objects (i.e. objects at the border and those that are too small
or large have been excluded). The SmallRemovedSegmented image is the
same except that the objects at the border and the large objects have
been included. These extra objects are used to perform the identification
of secondary object outlines, since they are probably real objects (even
if we don’t want to measure them). Small objects are not used at this
stage because they are more likely to be artifactual, and so they
therefore should not "claim" any secondary object pixels.

TECHNICAL DESCRIPTION OF THE PROPAGATION OPTION:
Propagate labels from LABELS_IN to LABELS_OUT, steered by IMAGE and
limited to MASK. MASK should be a logical array. LAMBDA is a
regularization parameter, larger being closer to Euclidean distance in
the image plane, and zero being entirely controlled by IMAGE. Propagation
of labels is by shortest path to a nonzero label in LABELS_IN. Distance
is the sum of absolute differences in the image in a 3x3 neighborhood,
combined with LAMBDA via sqrt(differences^2 + LAMBDA^2). Note that there
is no separation between adjacent areas with different labels (as there
would be using, e.g., watershed). Such boundaries must be added in a
postprocess. IdentifySecPropagateSubfunction is the subfunction
implemented in C and MEX to perform the propagate algorithm.

IdentifySecPropagateSubfunction.cpp is the source code, in C++
IdentifySecPropagateSubfunction.dll is compiled for windows
IdentifySecPropagateSubfunction.mexmac is compiled for macintosh
IdentifySecPropagateSubfunction.mexglx is compiled for linux
IdentifySecPropagateSubfunction.mexa64 is compiled for 64-bit linux

To compile IdentifySecPropagateSubfunction for different operating
systems, you will need to log on to that operating system and at the
command line of MATLAB enter:
mex IdentifySecPropagateSubfunction

See also Identify primary modules.

101

102

Module: IdentifyTertiarySubregion

Help for the Identify Tertiary Subregion module:
Category: Object Processing

SHORT DESCRIPTION:
Identifies tertiary obects (e.g. cytoplasm) by removing the primary
objects (e.g. nuclei) from secondary objects (e.g. cells) leaving a
ring shape.

This module will take the smaller identified objects and remove from them
the larger identified objects. For example, "subtracting" the nuclei from
the cells will leave just the cytoplasm, the properties of which can then
be measured by Measure modules. The larger objects should therefore be
equal in size or larger than the smaller objects and must completely
contain the smaller objects. Both inputs should be objects produced by
identify modules, not images.

Note: creating subregions using this module can result in objects that
are not contiguous, which does not cause problems when running the
Measure Intensity and Texture modules, but does cause problems when
running the Measure Area Shape module because calculations of the
perimeter, aspect ratio, solidity, etc. cannot be made for noncontiguous
objects.

See also Identify Primary and Identify Secondary modules.

103

Module: ImageMath

Help for the ImageMath module:
Category: Image Processing

SHORT DESCRIPTION:
Performs simple mathematical operations on image intensities.

Operation:

Average in the ImageMath module is the numerical average of the two images loaded in
the module. If you would like to average many images (all of the images
in an entire pipeline), please use the CorrectIllumination_Calculate
module and chose the option "(For ’All’ mode only) What do you want to
call the averaged image (prior to dilation or smoothing)?
(This is an image produced during the calculations - it is typically not
needed for downstream modules)" This will be an average over all images.

Multiply factors:
The final image may have a substantially different range of pixel
intensities than the originals, so each image can be multiplied by a
factor prior to the operation. This factor can be any real number.

Do you want values in the image to be set to zero/one?:
Values outside the range of 0 to 1 might not be handled well by other
modules. Here, you have the option of setting negative values to 0.
For other options (e.g. setting values over 1 to equal 1), see the
Rescale Intensity module.

See also SubtractBackground, RescaleIntensity.

104

Module: InvertForPrinting

Help for the Invert For Displaymodule:
Category: Image Processing

SHORT DESCRIPTION:
Inverts Fluorescent-looking images into Brightfield-looking images.

This module works on color images. It turns a single or
multi-channel immunofluorescent-stained image into an image that
resembles a brightfield image stained with similarly-colored stains,
which generally print better.

105

Module: KeepLargestObject

Help for KeepLargestObjects module:
Category: Object Processing

SHORT DESCRIPTION:

If there is more than one primary object inside a secondary object,
delete all except the largest one.

106

Module: LabelImages

Help for the Label Images module:
Category: Other

SHORT DESCRIPTION:
Labels images by assigning them a row and column annotation based on a
plate layout.

This module labels images by assigning them a row and column annotation
based on a plate layout. The annotation is created and stored as an image
measurement that is stored in the output file and can thus be exported
with other image data. For example, for 96 well plates, the first image
cycle will labeled:
PlateNumber = 1, RowNumber = 1, ColumnNumber = 1, SiteNumber = 1,
RowText = A, ColumnText = 01, RowAndColumnText = A01, and
FullLabel = Plate1_A01_site01. The second
well will be labeled A02 or B01, depending on your request. You can also
specify how many images cycles are associated per well, if there are
multiple fields of view per well.

Features measured: Feature Number:
PlateNumber | 1
RowNumber | 2
ColumnNumber | 3
SiteNumber | 4
RowText | 5
ColumnText | 6
RowAndColumnText | 7
FullLabelText | 8

Settings: Most are self-explanatory.

See also DefineGrid, for labeling a grid within each image.

107

Module: LoadImageDirectory

Help for the LoadImageDirectory module:
Category: File Processing

SHORT DESCRIPTION:
Makes a projection either by averaging or taking the maximum pixel value
at each pixel position of a number of images organized by directory

This module combines a set of images by averaging or by taking the maximum
pixel intensity at each pixel position. When this module is used to
average a Z-stack (3-D image stack), this process is known as making
a projection.

Settings:

* Enter the pathname to the folders containing the images:
This is the base directory that contains each of the directories
to be combined into a projection. Relative paths are from the image
folder: for instance "." operates on the directories in the image folder.

* Enter the text that the folders have in common:
Enter some portion of the directory name that’s common to all
directories for this type of image. For instance, "DNA-A01" and
"DNA-A02" can be selected by entering "DNA". Enter "*" to take all
directories.

* Analyze all subfolders within each folder:
If yes, the module will read image files in subfolders of each
folder it looks at. If no, it will only read image files out of
the named folder.

* How do you want to load these files:
Exact match - if the text below matches some part of the text in the

image file name, the file will be accepted.
Regular expressions - use a regular expression to match the image

file name (see LoadImages for details).

* What kind of projection would you like to make?:
If you choose Average, the average pixel intensity at each pixel
position will be used to created the final image. If you choose
Maximum, the maximum pixel value at each pixel position will be used to
created the final image.

* What do you want to call the projected image?:
Give a name to the resulting image, which could be used in subsequent
modules.

Measurements:
Image / DirectoryName - the name of the directory from which we took

the image files for this image
/ PathName - the path to that directory

108

See also LoadImages

109

Module: LoadImages

Help for the Load Images module:
Category: File Processing

SHORT DESCRIPTION:
Allows you to specify which images or movies are to be loaded and in
which order. Groups of images will be loaded per cycle of CellProfiler
processing.

Tells CellProfiler where to retrieve images and gives each image a
meaningful name for the other modules to access. When used in combination
with a SaveImages module, you can load images in one file format and
save in another file format, making CellProfiler work as a file format
converter.

If more than four images per cycle must be loaded, more than one
LoadImages module can be run sequentially. Running more than one of these
modules also allows images to be retrieved from different folders. Hint:
if you want to load all images in a directory, you can enter the file
extension as the text for which to search.

Relative pathnames can be used. For example, in regular expressions text
mode, on the Mac platform you could leave the folder where images are to
be loaded as ’.’ to choose the default image folder, and then enter
../DAPI[123456789].tif as the name of the files you would like to load in
order to load images from the directory one above the default image
directory. Or, you could type .../AnotherSubfolder (note the three
periods: the first is interpreted as a standin for the default image
folder) as the folder from which images are to be loaded and enter the
filename as .tif to load an image from a different subfolder of the
parent of the default image folder.

Note: You can test a pipeline’s settings on a single image cycle by
setting the Load Images module appropriately. For example, if loading by
order, you can set the number of images per set to equal the total number
of images in the folder (even if it is thousands) so that only the first
cycle will be analyzed. Or, if loading by text, you can make the
identifying text specific enough that it will recognize only one group of
images in the folder. Once the settings look good for a few test images,
you can change the Load Images module to recognize all images in your
folder.

Settings:

How do you want to load these files?
- Order is used when images (or movies) are present in a repeating order,
like DAPI, FITC, Red, DAPI, FITC, Red, and so on, where images are
selected based on how many images are in each group and what position
within each group a particular color is located (e.g. three images per
group, DAPI is always first).

110

- Text is used to load images (or movies) that have a particular piece of
text in the name. You have the option of matching text exactly, or using
regular expressions to match text. The files containing the text that are
in image format will be loaded.

- When regular expressions is selected, patterns are specified using
combinations of metacharacters and literal characters. There are a few
classes of metacharacters, partially listed below. More extensive
explanation can be found at:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/
f0-42649.html

The following metacharacters match exactly one character from its
respective set of characters:

Metacharacter Meaning
--------------- --------------------------------

. Any character
[] Any character contained within the brackets

[^] Any character not contained within the brackets
\w A word character [a-z_A-Z0-9]
\W Not a word character [^a-z_A-Z0-9]
\d A digit [0-9]
\D Not a digit [^0-9]
\s Whitespace [\t\r\n\f\v]
\S Not whitespace [^ \t\r\n\f\v]

The following metacharacters are used to logically group subexpressions
or to specify context for a position in the match. These metacharacters
do not match any characters in the string:

Metacharacter Meaning
--------------- --------------------------------

() Group subexpression
| Match subexpression before or after the |
^ Match expression at the start of string
$ Match expression at the end of string

\< Match expression at the start of a word
\> Match expression at the end of a word

The following metacharacters specify the number of times the previous
metacharacter or grouped subexpression may be matched:

Metacharacter Meaning
--------------- --------------------------------

* Match zero or more occurrences
+ Match one or more occurrences
? Match zero or one occurrence

{n,m} Match between n and m occurrences

Characters that are not special metacharacters are all treated literally
in a match. To match a character that is a special metacharacter, escape
that character with a ’\’. For example ’.’ matches any character, so to
match a ’.’ specifically, use ’\.’ in your pattern.

111

Examples:

* [trm]ail matches ’tail’ or ’rail’ or ’mail’
* [0-9] matches any digit between 0 to 9
* [^Q-S] matches any character other than ’Q’ or ’R’ or ’S’
* [[]A-Z] matches any upper case alphabet along with square brackets
* [ag-i-9] matches characters ’a’ or ’g’ or ’h’ or ’i’ or ’-’ or ’9’
* [a-p]* matches ’’ or ’a’ or ’aab’ or ’p’ etc.
* [a-p]+ matches ’a’ or ’abc’ or ’p’ etc.
* [^0-9] matches any string that is not a number
* ^[0-9]*$ matches any string that is a natural number or ’’
* ^-[0-9]+$|^\+?[0-9]+$ matches any integer

If you want to exclude files, type in the text that the excluded files
have in common.
The image/movie files specified with the TEXT option may also include
files that you want to exclude from analysis (such as thumbnails created
by an imaging system). Here you can specify text that mark files for
exclusion. This text is treated as a exact match and not as a regular
expression. Note: This choice is ignored with the ORDER option.

What do you want to call these images within CellProfiler?
Give your images a meaningful name that you will use when referring to
these images in later modules. To avoid errors, image names should
follow Matlab naming conventions:

1. Field names must begin with a letter, which may be followed by any
combination of letters, digits, and underscores. The following statements are all invalid:
w = setfield(w, ’My.Score’, 3);
w = setfield(w, ’1stScore’, 3);
w = setfield(w, ’1+1=3’, 3);
w = setfield(w, ’@MyScore’, 3);
3. Although field names can be of any length, MATLAB uses only the first N
characters of the field name, (where N is the number returned by the function
namelengthmax), and ignores the rest.

NOTE: When CellProfiler saves image and object measurements, it
appends the text of your ImageName with meaningful text about the
measurement (ie, Intensity_MeanIntensity_DAPI) which can quickly reach
this 63-char limit and are truncated by CellProfiler to avoid errors.
Take care to name your images and measurements conservatively to avoid
truncating measurements to the same name.
3. MATLAB distinguishes between uppercase and lowercase characters.
Field name length is not the same as field name Length.
4. In most cases, you should refrain from using the names of functions and
variables as field names.

Analyze all subfolders within the selected folder?
You may have subfolders within the folder that is being searched, but if
you are in TEXT mode, the names of the folders themselves must not
contain the text you are searching for or an error will result.

If the images you are loading are binary (black/white only), in what

112

format do you want to store them?
CellProfiler will save your image in binary format if your image has
only two distinct values and you have selected "binary" instead of
"grayscale".

Do you want to select the subfolders to process?
If you answered "Yes" to both this question and "Analyze subfolders,"
CellProfiler will provide a dialog box on the first cycle which will
allow you to select which folders under the Image directory you want to
process.

Do you want to check image sets for missing or duplicate files?
Tokens must be defined for the unique parts of the string. (REGULAR EXPRESSIONS ONLY)
Selecting this option with REGULAR mode will examine the filenames for
unmatched or duplicate files based on the filename prefix (such as those
generated by HCS systems). This setting is only functional if tokens are
used in the expression string (either named or unnamed), and does not
check for files missing from a particular plate layout. A dialog box
will report the results.
Unnamed tokens are defined by enclosing the string in parentheses.
For example, if you have 2 channels defined by ’..._w1...’ and ’..._w2...’
then call these _w(1) and _w(2)
Named tokens are defined by this syntax: (?<name>expr), so that in the same
example as above, the named tokens would be _w(?<wavelength1>1) and
_w(?<wavelength2>2).

Notes about loading images:

CellProfiler can open and read .ZVI files. .ZVI files are Zeiss files
that are generated by the microscope imaging software Axiovision. These
images are stored in 12-bit depth. Currently, CellProfiler cannot read
stacked or color ZVI images.

CellProfiler can open and read .DIB files. These files are stored with
12-bit depth using a 16-bit file format.

Notes about loading movies:

(Update 10-11-2007) CellProfiler can read tif,tiff,flex multi-page
tif file in addition to those formats specified below.

Movies can be avi-formatted movies (must be uncompressed avi format on
UNIX and Mac platforms) or stk-format movies (stacks of tif images
produced by MetaMorph or NIHImage/ImageJ; The ability to read stk files
is thanks to code by: Francois Nedelec, EMBL, Copyright 1999-2003). Once
the files are identified, this module extracts each frame of each movie
as a separate image, and gives these images a meaningful name for the
other modules to access.

Suggestions for third party software to uncompress AVI files and convert
MOV files:

WINDOWS...
To convert movies to uncompressed avi format, you can use a free software

113

product called RAD Video Tools, which is available from:
http://www.radgametools.com/down/Bink/RADTools.exe

To convert a compressed AVI file or a MOV file into an uncompressed AVI:
1. Open RAD Video Tools
2. Select the file you want to convert
3. Click the "Convert a file" button
4. On the next screen, type the desired output file name, and

click the "Convert" button. Everything else can be left as default.
5. A window will pop up that asks you for the Video Compression to

use. Choose "Full Frames (Uncompressed)", and click OK.

MAC OSX...
The iMovie program which comes with Mac OSX can be used to convert movies
to uncompressed avi format as follows:

1. File > New Project
2. File > Import (select the movie)
3. File > Share
Choose the QuickTime tab
Compress movie for Expert Settings, click Share
Name the file, choose Export: Movie to Avi
Click Options...
Click Settings...
Compression = None
Depth = Millions of Colors (NOT "+")
Quality = best
Frames per second = doesn’t matter.
OK, OK, Save

4. To check/troubleshoot the conversion, you can use the following
commands in Matlab:
>> MovieInfo = aviinfo(’My Great Movie3.avi’)

MovieInfo =
Filename: ’My Great Movie3.avi’
FileSize: 481292920

FileModDate: ’25-Mar-2005 09:59:56’
NumFrames: 422

FramesPerSecond: 20
Width: 720
Height: 528

ImageType: ’truecolor’
VideoCompression: ’none’

Quality: 4.2950e+07
NumColormapEntries: 0

The following error means that the Depth was improper (either you tried
to save in grayscale or the wrong bit depth color):
>> movie = aviread(’My Great Movie2.avi’);
??? Error using ==> aviread
Bitmap data must be 8-bit Index images or 24-bit TrueColor images
--

114

See also LoadSingleImage.

115

Module: LoadSingleImage

Help for the Load Single Image module:
Category: File Processing

SHORT DESCRIPTION:
Loads a single image, which will be used for all image cycles.

Note: for most purposes, you will probably want to use the Load Images
module, not this one.

Tells CellProfiler where to retrieve a single image and gives the image a
meaningful name for the other modules to access. This module processes
the input text string in one of two ways:
(1) A string referring to a filename. In this case, the module only
executes the first time through the pipeline, and thereafter the image
is accessible to all subsequent cycles being processed. This is
particularly useful for loading an image like an Illumination correction
image to be used by the CorrectIllumination_Apply module. Note: Actually,
you can load four ’single’ images using this module.
(2) A string referring to a regular expression. In this case, the module
should be placed after a FileNameMetadata module and use the same regular
expression applied in the FileNameMetadata module. It will execute each
cycle of the pipeline, matching the regular expression to the metadata
previously measured. This is useful for when you have multiple images
that need to be used once per cycle, but have a different name each
cycle.

Relative pathnames can be used. For example, on the Mac platform you
could leave the folder where images are to be loaded as ’.’ to choose the
default image folder, and then enter ../Imagetobeloaded.tif as the name
of the file you would like to load in order to load the image from the
directory one above the default image directory. Or, you could type
.../AnotherSubfolder (note the three periods: the first is interpreted as
a standin for the default image folder) as the folder from which images
are to be loaded and enter the filename as Imagetobeloaded.tif to load an
image from a different subfolder of the parent of the default image
folder. The above also applies for ’&’ with regards to the default
output folder.

NOTE: A LoadSingleImage module must be placed downstream of a
LoadImages module in order to work correctly.

If more than four single images must be loaded, more than one Load Single
Image module can be run sequentially. Running more than one of these
modules also allows images to be retrieved from different folders.

LoadImages can now open and read .ZVI files. .ZVI files are Zeiss files
that are generated by the microscope imaging software, Axiovision. These
images are stored with 12-bit precision. Currently, this will not work
with stacked or color images.

See also LoadImages.

116

Module: LoadText
Help for the Load Text module:
Category: File Processing

SHORT DESCRIPTION:
Loads text information corresponding to images. This data (e.g. gene
names or sample numbers) can be displayed on a grid or exported with the
measurements to help track samples.

Use this tool to load in text information. This is useful for two
reasons:
1. Some modules, like DisplayGridInfo, place text information onto
images. In this case, the number of text entries that you load with this
module must be identical to the number of grid locations.
2. If the number of text entries that you load with this module is
identical to the number of cycles you are processing, the text
information you load will be placed in the output files alongside the
measurements that are made. Therefore, the information will be exported
with the measurements when you use the ExportData data tool, helping you
to keep track of your samples. If you forget this module, you can also
run the AddData data tool after processing is complete; its function is
the same for this purpose.

The text information to be loaded must be in a separate text file with
the following syntax:

DESCRIPTION <description>
<Text info 1>
<Text info 2>
<Text info 3>

.

.

<description> is a description of the text information stored in the
file. It can contain spaces or unusual characters.

For example:

DESCRIPTION Gene names
Gene X
Gene Y
Gene Z

Be sure that the file is saved in plain text format (.txt), not Rich Text
Format (.rtf).

Path Name:
Type period (.) for the default image folder, or ampersand (&) for the
default output folder.
NOTE: this nomenclature is opposite that in SaveImages for historical purposes.

See also DisplayGridInfo module and AddData data tool.

117

Module: MakeProjection

Help for the Average module:
Category: Image Processing

SHORT DESCRIPTION:
Makes a projection either by averaging or taking the maximum pixel value
at each pixel position.

This module averages a set of images by averaging the pixel intensities
at each pixel position. When this module is used to average a Z-stack
(3-D image stack), this process is known as making a projection.

Settings:

* What did you call the images to be made into a projection?:
Choose an image from among those loaded by a module or created by the

pipeline, which will be made into a projection with the corresponding images of every
image set.

* What kind of projection would you like to make?:
If you choose Average, the average pixel intensity at each pixel
position will be used to created the final image. If you choose
Maximum, the maximum pixel value at each pixel position will be used to
created the final image.

* What do you want to call the projected image?:
Give a name to the resulting image, which could be used in subsequent

modules. See the next setting for restrictions.

* Are the images you want to use to be loaded straight from a Load Images
module, or are they being produced by the pipeline?:
If you choose Load Images Module, the module will calculate the single,

projected image the first time through the pipeline (i.e. for cycle 1) by
loading the image of the type specified above of every image set.
It is then acceptable to use the resulting image
later in the pipeline. Subsequent runs through the pipeline (i.e. for
cycle 2 through the end) produce no new results. The projcted image
calculated during the first cycle is still available to other modules
during subsequent cycles.
If you choose Pipeline, the module will calculate the single, projected

image during the last cycle of the pipeline. This is because it must wait
for preceding modules in the pipeline to produce their results before it
can calculate an projected image. For example, you cannot calculate the
projection of all Cropped images until after the last image cycle completes
and the last cropped image is produced. Note that in this mode, the
resulting projected image will not be available until the last cycle has
been processed, so the projected image it produces cannot be used in
subsequent modules unless they are instructed to wait until the last
cycle.

See also CorrectIllumination_Calculate.

118

Module: MaskImage

Help for the Mask Image module:
Category: Image Processing

SHORT DESCRIPTION:
Masks image and saves it for future use.

This module masks an image and saves it in the handles structure for
future use. The masked image is based on the original image and the
object selected.

Note that the image saved for further processing downstream is grayscale.
If a binary mask is desired in subsequent modules, you might be able to
access [’CropMask’,MaskedImageName] (e.g. ’CropMaskMaskBlue’), or simply
use the ApplyThreshold module instead of MaskImage.

119

Module: MeasureCorrelation

Help for the Measure Correlation module:
Category: Measurement

SHORT DESCRIPTION:
Measures the correlation between intensities in different images (e.g.
different color channels) on a pixel by pixel basis, within identified
objects or across an entire image.

Given two or more images, calculates the correlation between the
pixel intensities. The correlation can be measured for the entire
images, or individual correlation measurements can be made within each
individual object. For example:

Image overall: In Nuclei:
OrigBlue_OrigGreen Correlation: 0.49955 -0.07395
OrigBlue_OrigRed Correlation: 0.59886 -0.02752
OrigGreen_OrigRed Correlation: 0.83605 0.68489

Features measured: Feature Number:
Correlation | 1
Slope | 2

See also MeasureObjectIntensity, MeasureImageIntensity.

120

Module: MeasureImageAreaOccupied

Help for the Measure Image Area Occupied module:
Category: Measurement

SHORT DESCRIPTION:
Measures total area covered by stain in an image.

This module simply measures the total area covered by stain in an
image, using a threshold to determine stain vs background.

How it works:
This module applies a threshold to the incoming image so that any pixels
brighter than the specified value are assigned the value 1 (white) and
the remaining pixels are assigned the value zero (black), producing a
binary image. The number of white pixels are then counted. This provides
a measurement of the area occupied by the staining.

Features measured: Feature Number:
AreaOccupied | 1
TotalImageArea | 2
ThresholdUsed | 3

(Note: to use with Calculate modules, the "category of measures you would
like to use" should be entered as: AreaOccupied_Name, where Name is the
name you entered in the MeasureAreaOccupied module.)

Settings:

* Select automatic thresholding method:
The threshold affects the stringency of the lines between the

objects and the background. You can have the threshold automatically
calculated using several methods, or you can enter an absolute number
between 0 and 1 for the threshold (to see the pixel intensities for your
images in the appropriate range of 0 to 1, use the CellProfiler Image
Tool, ’Show Or Hide Pixel Data’, in a window showing your image).
There are advantages either way. An absolute number treats every
image identically, but is not robust to slight changes in
lighting/staining conditions between images. An automatically
calculated threshold adapts to changes in lighting/staining
conditions between images and is usually more robust/accurate, but
it can occasionally produce a poor threshold for unusual/artifactual
images. It also takes a short time to calculate.

The threshold which is used for each image is recorded as a
measurement in the output file, so if you find unusual measurements
from one of your images, you might check whether the automatically
calculated threshold was unusually high or low compared to the
other images.

There are four methods for finding thresholds automatically, Otsu’s
method, the Mixture of Gaussian (MoG) method, the Background method, and
the Ridler-Calvard method. The Otsu method uses our version of the Matlab
function graythresh (the code is in the CellProfiler subfunction

121

CPthreshold). Our modifications include taking into account the max and
min values in the image and log-transforming the image prior to
calculating the threshold. Otsu’s method is probably better if you don’t
know anything about the image, or if the percent of the image covered by
objects varies substantially from image to image. But if you know the
object coverage percentage and it does not vary much from image to image,
the MoG can be better, especially if the coverage percentage is not near
50%. Note, however, that the MoG function is experimental and has not
been thoroughly validated. The background function is very simple and is
appropriate for images in which most of the image is background. It finds
the mode of the histogram of the image, which is assumed to be the
background of the image, and chooses a threshold at twice that value
(which you can adjust with a Threshold Correction Factor, see below).
This can be very helpful, for example, if your images vary in overall
brightness but the objects of interest are always twice (or actually, any
constant) as bright as the background of the image. The Ridler-Calvard
method is simple and its results are often very similar to Otsu’s. It
chooses and initial threshold, and then iteratively calculates the next
one by taking the mean of the average intensities of the background and
foreground pixels determined by the first threshold, repeating this until
the threshold converges.

* Threshold correction factor:
When the threshold is calculated automatically, it may consistently be
too stringent or too lenient. You may need to enter an adjustment factor
which you empirically determine is suitable for your images. The number 1
means no adjustment, 0 to 1 makes the threshold more lenient and greater
than 1 (e.g. 1.3) makes the threshold more stringent. For example, the
Otsu automatic thresholding inherently assumes that 50% of the image is
covered by objects. If a larger percentage of the image is covered, the
Otsu method will give a slightly biased threshold that may have to be
corrected using a threshold correction factor.

* Lower and upper bounds on threshold:
Can be used as a safety precaution when the threshold is calculated
automatically. For example, if there are no objects in the field of view,
the automatic threshold will be unreasonably low. In such cases, the
lower bound you enter here will override the automatic threshold.

* Approximate percentage of image covered by objects:
An estimate of how much of the image is covered with objects. This
information is currently only used in the MoG (Mixture of Gaussian)
thresholding but may be used for other thresholding methods in the
future.

See also IdentifyPrimAutomatic, IdentifyPrimManual, and
MeasureObjectAreaShape modules.

122

Module: MeasureImageGranularity

Help for the Measure Image Granularity module:
Category: Measurement

SHORT DESCRIPTION:
This module measures the image granularity as described by Ilya Ravkin.

Image granularity can be useful to measure particular assays, in
particular the "Transfluor" assay which depends on cellular
texture/smoothness.

Features measured: Feature Number:
GS1 | 1
GS2 | 2
GS3 | 3
GS4 | 4
GS5 | 5
GS6 | 6
GS7 | 7
GS8 | 8
GS9 | 9
GS10 | 10
GS11 | 11
GS12 | 12
GS13 | 13
GS14 | 14
GS15 | 15
GS16 | 16

Settings for this module:

Subsampling size: Only a subsample of the image is processed, to speed up
the calculation. Increasing the fraction will increase the accuracy but
will require more processing time. Images are typically of higher
resolution than is required for this step, so the default is to subsample
25% of the image. For low-resolution images, increase the subsampling
fraction and for high-resolution images, decrease the subsampling
fraction. More detail: The subsampling fraction is to compensate for the
usually oversampled images; at least they are oversampled in both
Transfluor library image sets. See
http://www.ravkin.net/presentations/Statistical%20properties%20of%20algor
ith ms%20for%20analysis%20of%20cell%20images.pdf slides 27-31, 49-50.
Subsampling by 1/4 reduces computation time by (1/4)^3 because the size
of the image is (1/4)^2 of original and length of granular spectrum can
be 1/4 of original. Moreover, the results were actually a little better
with subsampling, which is probably because with subsampling the
individual granular spectrum components can be used as features, whereas
without subsampling a feature should be a sum of several adjacent
granular spectrum components. The recommendation on the numerical value
can’t be given in advance; an analysis like in the above reference is
required before running the whole set.

123

Subsample fraction: Background removal is just to remove low frequency in
the image. Any method can be used. We subtract a highly open image. To do
it fast we subsample the image first. The subsampling fraction is usually
[0.125 - 0.25]. This is highly empirical. The significance of background
removal in the context of granulometry is only in that image volume at
certain thickness is normalized by total volume, which depends on how the
background was removed.

Structuring element size: Radius of the structuring element (in
subsampled image). Radius of structuring element after subsampling is
usually [6-16]. It is better to think of this radius in the original
image scale and then to multiply by subsampling fraction. In the original
image scale it should be [30-60]. This is highly empirical.

Granular Spectrum Length (default = 16): Needs a trial run to see which
Granular Spectrum Length yields informative measurements.

References for Granular Spectrum:
J.Serra, Image Analysis and Mathematical Morphology, Vol. 1. Academic
Press, London, 1989 Maragos,P. "Pattern spectrum and multiscale shape
representation", IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11, N 7, pp. 701-716, 1989

L.Vincent "Granulometries and Opening Trees", Fundamenta Informaticae,
41, No. 1-2, pp. 57-90, IOS Press, 2000.

L.Vincent "Morphological Area Opening and Closing for Grayscale Images",
Proc. NATO Shape in Picture Workshop, Driebergen, The Netherlands, pp.
197-208, 1992.

I.Ravkin, V.Temov "Bit representation techniques and image processing",
Applied Informatics, v.14, pp. 41-90, Finances and Statistics, Moskow,
1988 (in Russian)

124

Module: MeasureImageIntensity

Help for the Measure Image Intensity module:
Category: Measurement

SHORT DESCRIPTION:
Measures the total image intensity by summing every pixel’s intensity,
but can discard some pixel values if desired.

This module will sum all pixel values to measure the total image
intensity. The user can also choose to ignore pixels below or above a
particular intensity level.

Features measured: Feature Number:
TotalIntensity | 1
MeanIntensity | 2
TotalArea | 3

Settings:

You may tell the module to ignore pixels above or below a pixel intensity
value that you specify, in the range 0 to 1 (use the CellProfiler image
tool ’ShowOrHidePixelData’ to see the pixel intensities for your images
in the appropriate range of 0 to 1). Leaving these values at 0 and 1
means that every pixel intensity will be included in the measurement.
This setting is useful to adjust when you are attempting to exclude
bright artifactual objects: you can first set the threshold to exclude
these bright objects, but it may also be desirable to expand the
thresholded region around those bright objects by a certain distance so
as to avoid a ’halo’ effect.

For publication purposes, it is important to note that the units of
intensity from microscopy images are usually described as "Intensity
units" or "Arbitrary intensity units" since microscopes are not
callibrated to an absolute scale. Also, it is important to note whether
you are reporting either the mean or the total intensity, so specify
"Mean intensity units" or "Total intensity units" accordingly.

See also MeasureObjectIntensity.

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 7346 $

125

Module: MeasureImageQuality

Help for the Measure Image Quality module:
Category: Measurement

SHORT DESCRIPTION:
Measures features that indicate image quality.

Measures features that indicate image quality, such as the percentage of
pixels in the image that are saturated and measurements of blur (poor
focus).

Features measured: Feature Number:
FocusScore | 1
LocalFocusScore | 2
WindowSize | 3
PercentSaturation | 4
PercentMaximal | 5

In addition, an OrigThreshold value is added to the Image measurements
under the MeasureImageQuality category.

Lastly, the following measurements are placed in the Experiment category:
MeanThreshold
MedianThreshold
StdevThreshold

Please note that these Experiment measurements are calculated once the
pipeline has run through all of the cycles consecutively. It will not
produce a result for a batch run, since the cycles are processed
independently from each other.

The percentage of pixels that are saturated is calculated and stored as a
measurement in the output file. ’Saturated’ means that the pixel’s
intensity value is equal to the maximum possible intensity value for that
image type.

Because the saturated pixels may not reach to the maximum possible
intensity value of the image type for some reasons such as CCDs saturate
before 255 in graylevel, we also calculate the percentage of the maximal
intensity value. Even though we may capture the maximal intensity
percentage of ’dark’ images, the maximal percentage is mostly very minimal or
ignorable. So, PercentMaximal is another good indicator for saturation
detection.

The module can also measure blur by calculating a focus score (higher =
better focus). This calculation takes much longer than the saturation
checking, so it is optional. We are calculating the focus using the
normalized variance. We used this algorithm because it was ranked best in
this paper:
Sun, Y., Duthaler, S., Nelson, B. "Autofocusing in Computer Microscopy:

Selecting the optimals focus algorithm." Microscopy Research and

126

Technique 65:139-149 (2004)

The calculation of the focus score is as follows:
[m,n] = size(Image);
MeanImageValue = mean(Image(:));
SquaredNormalizedImage = (Image-MeanImageValue).^2;
FocusScore{ImageNumber} = ...

sum(SquaredNormalizedImage(:))/(m*n*MeanImageValue);

The above score is to measure a relative score given a focus setting of
a certain microscope. Using this, one can calibrrate the microscope’s
focus setting. However it doesn’t necessarily tell you how well an image
was focused when taken. That means these scores obtained from many different
images probably taken in different situations and with different cell
contents can not be used for focus comparison.

The LocalFocusScore is a local version of the original FocusScore.
LocalFocusScore was just named after the original one to be consistent
with naming. Note that these focus scores do not necessarily
represent the qualities of focusing between different images.
LocalFocusScore was added to differentiate good segmentation and bad
segmentation images in the cases when bad segmentation images usually
contain no cell objects with high background noise.

Example Output:

Percent of pixels that are Saturated:
RescaledOrig: 0.002763

Percent of pixels that are in the Maximal
Intensity:
RescaledOrig: 0.0002763

Focus Score:
RescaledOrig: 0.016144

Suggested Threshold:
Orig: 0.0022854

Note: This module replaces the outdated "MeasureImageSaturationBlur".

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003--2008.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

127

$Revision: 8436 $

128

Module: MeasureNeurons

Help for the MeasureNeurons module:
Category: Measurement

SHORT DESCRIPTION:
This module will measure branching info of skelton objects from seed points.

129

Module: MeasureObjectAreaShape

Help for the Measure Object Area Shape module:
Category: Measurement

SHORT DESCRIPTION:
Measures several area and shape features of identified objects.

Given an image with objects identified (e.g. nuclei or cells), this
module extracts area and shape features of each object. Note that these
features are only reliable for objects that are completely inside the
image borders, so you may wish to exclude objects touching the edge of
the image in Identify modules.

Basic shape features: Feature Number:

Zernike shape features measure shape by describing a binary object (or
more precisely, a patch with background and an object in the center) in a
basis of Zernike polynomials, using the coefficients as features (Boland
et al., 1998). Currently, Zernike polynomials from order 0 to order 9 are
calculated, giving in total 30 measurements. While there is no limit to
the order which can be calculated (and indeed users could add more by
adjusting the code), the higher order polynomials carry less information.

Details about how measurements are calculated:
This module retrieves objects in label matrix format and measures them.
The label matrix image should be "compacted": that is, each number should
correspond to an object, with no numbers skipped. So, if some objects
were discarded from the label matrix image, the image should be converted
to binary and re-made into a label matrix image before feeding into this
module.

The following measurements are extracted using the Matlab regionprops.m
function:
*Area - Computed from the the actual number of pixels in the region.
*Eccentricity - Also known as elongation or elongatedness. For an ellipse
that has the same second-moments as the object, the eccentricity is the
ratio of the between-foci distance and the major axis length. The value
is between 0 (a circle) and 1 (a line segment).
*Solidity - Also known as convexity. The proportion of the pixels in the
convex hull that are also in the object. Computed as Area/ConvexArea.
*Extent - The proportion of the pixels in the bounding box that are also
in the region. Computed as the Area divided by the area of the bounding box.
*EulerNumber - Equal to the number of objects in the image minus the
number of holes in those objects. For modules built to date, the number
of objects in the image is always 1.
*MajorAxisLength - The length (in pixels) of the major axis of the
ellipse that has the same normalized second central moments as the
region.
*MinorAxisLength - The length (in pixels) of the minor axis of the
ellipse that has the same normalized second central moments as the
region.

130

*Perimeter - the total number of pixels around the boundary of each
region in the image.

In addition, the following feature is calculated:

FormFactor = 4*pi*Area/Perimeter^2, equals 1 for a perfectly circular
object%

HERE IS MORE DETAILED INFORMATION ABOUT THE MEASUREMENTS FOR YOUR
REFERENCE

’Area’ ? Scalar; the actual number of pixels in the region. (This value
might differ slightly from the value returned by bwarea, which weights
different patterns of pixels differently.)

’Eccentricity’ ? Scalar; the eccentricity of the ellipse that has the
same second-moments as the region. The eccentricity is the ratio of the
distance between the foci of the ellipse and its major axis length. The
value is between 0 and 1. (0 and 1 are degenerate cases; an ellipse whose
eccentricity is 0 is actually a circle, while an ellipse whose eccentricity
is 1 is a line segment.) This property is supported only for 2-D input
label matrices.

’Solidity’ -? Scalar; the proportion of the pixels in the convex hull that
are also in the region. Computed as Area/ConvexArea. This property is
supported only for 2-D input label matrices.

’Extent’ ? Scalar; the proportion of the pixels in the bounding box that
are also in the region. Computed as the Area divided by the area of the
bounding box. This property is supported only for 2-D input label matrices.

’EulerNumber’ ? Scalar; equal to the number of objects in the region
minus the number of holes in those objects. This property is supported
only for 2-D input label matrices. regionprops uses 8-connectivity to
compute the EulerNumber measurement. To learn more about connectivity,
see Pixel Connectivity.

’perimeter’ ? p-element vector containing the distance around the boundary
of each contiguous region in the image, where p is the number of regions.
regionprops computes the perimeter by calculating the distance between
each adjoining pair of pixels around the border of the region. If the
image contains discontiguous regions, regionprops returns unexpected
results. The following figure shows the pixels included in the perimeter
calculation for this object

’MajorAxisLength’ ? Scalar; the length (in pixels) of the major axis of
the ellipse that has the same normalized second central moments as the
region. This property is supported only for 2-D input label matrices.

’MinorAxisLength’ ? Scalar; the length (in pixels) of the minor axis of
the ellipse that has the same normalized second central moments as the
region. This property is supported only for 2-D input label matrices.

’Orientation’ ? Scalar; the angle (in degrees ranging from -90 to 90

131

degrees) between the x-axis and the major axis of the ellipse that has the
same second-moments as the region. This property is supported only for
2-D input label matrices.

See also MeasureImageAreaOccupied.

132

Module: MeasureObjectIntensity

Help for the Measure Object Intensity module:
Category: Measurement

SHORT DESCRIPTION:
Measures several intensity features for identified objects.

Given an image with objects identified (e.g. nuclei or cells), this
module extracts intensity features for each object based on a
corresponding grayscale image. Measurements are recorded for each object.

Features measured: Feature Number:
IntegratedIntensity | 1
MeanIntensity | 2
StdIntensity | 3
MinIntensity | 4
MaxIntensity | 5
IntegratedIntensityEdge | 6
MeanIntensityEdge | 7
StdIntensityEdge | 8
MinIntensityEdge | 9
MaxIntensityEdge | 10
MassDisplacement | 11
LowerQuartileIntensity | 12
MedianIntensity | 13
UpperQuartileIntensity | 14

How it works:
Retrieves objects in label matrix format and a corresponding original
grayscale image and makes measurements of the objects. The label matrix
image should be "compacted": that is, each number should correspond to an
object, with no numbers skipped. So, if some objects were discarded from
the label matrix image, the image should be converted to binary and
re-made into a label matrix image before feeding it to this module.

Intensity Measurement descriptions:

* IntegratedIntensity - The sum of the pixel intensities within an
object.
* MeanIntensity - The average pixel intensity within an object.
* StdIntensity - The standard deviation of the pixel intensities within
an object.
* MaxIntensity - The maximal pixel intensity within an object.
* MinIntensity - The minimal pixel intensity within an object.
* IntegratedIntensityEdge - The sum of the edge pixel intensities of an
object.
* MeanIntensityEdge - The average edge pixel intensity of an object.
* StdIntensityEdge - The standard deviation of the edge pixel intensities
of an object.
* MaxIntensityEdge - The maximal edge pixel intensity of an object.
* MinIntensityEdge - The minimal edge pixel intensity of an object.

133

* MassDisplacement - The distance between the centers of gravity in the
gray-level representation of the object and the binary representation of
the object.
* LowerQuartileIntensity - the intensity value of the pixel for which 25%
of the pixels in the object have lower values.
* MedianIntensity - the median intensity value within the object
* UpperQuartileIntensity - the intensity value of the pixel for which 75%
of the pixels in the object have lower values.

For publication purposes, it is important to note that the units of
intensity from microscopy images are usually described as "Intensity
units" or "Arbitrary intensity units" since microscopes are not
callibrated to an absolute scale. Also, it is important to note whether
you are reporting either the mean or the integrated intensity, so specify
"Mean intensity units" or "Integrated intensity units" accordingly.

See also MeasureImageIntensity.

134

Module: MeasureObjectNeighbors

Help for the Measure Object Neighbors module:
Category: Measurement

SHORT DESCRIPTION:
Calculates how many neighbors each object has.

Given an image with objects identified (e.g. nuclei or cells), this
module determines how many neighbors each object has. The user selects
the distance within which objects should be considered neighbors. The
module can measure the number of neighbors each object has if every
object were expanded up until the point where it hits another object; to
use this option, enter 0 (the number zero) for the pixel distance. If you
want your objects to be touching before you count neighbors (for
instance, in an image of tissue), use the ExpandOrShrink module to expand
your objects beforehand.

Features measured: Feature Number:
NumberOfNeighbors | 1
PercentTouching | 2
FirstClosestObjectNumber | 3
FirstClosestXVector | 4
FirstClosestYVector | 5
SecondClosestObjectNumber | 6
SecondClosestXVector | 7
SecondClosestYVector | 8
AngleBetweenNeighbors | 9

How it works: Retrieves objects in label matrix format. The objects
are expanded by the number of pixels the user specifies, and then
the module counts up how many other objects the object is
overlapping. PercentTouching, if computed, is defined as the number
of boundary pixels on an object not obscured when other objects are
dilated by the Neighbor distance limit (or 2 pixels if this distance
is set to 0 for the maximum expansion option detailed above).

Interpreting the module output:
In the color image output of the module, there is a color spectrum used
to determine which objects have neighbors, and how many. According to the
indices on the spectrum, the background is -1, objects with no neighbors
are 0, and objects with neighbors are greater than 0, with the increasing
index corresponding to more neighbors.

Note that the identity of neighbors for each object is saved in the
output file but that the structure of that data makes it incompatible
with CellProfiler’s export functions. To access this data, you will have
to use MATLAB.

Saving the objects:
* You can save the objects colored by number of neighbors to the handles
structure to be used in other modules. Here, the scalar value 1 is added

135

to every pixel so that the background is zero and the objects range from
1 up to the highest number of neighbors, plus one. This makes the objects
compatible with the Convert To Image module.

Saving the image:
* You can save the grayscale image of objects to the handles structure so
it can be saved to the hard drive. Here, the background is -1, and the
objects range from 0 (if it has no neighbors) up to the highest number of
neighbors. The -1 value makes it incompatible with the Convert To Image
module which expects a label matrix starting at zero.

136

Module: MeasureRadialDistribution

Help for the Measure Radial Distribution module:
Category: Measurement

SHORT DESCRIPTION:
Measures radial distribution of one or more proteins within a cell.

Given an image with objects identified, this module measures the
intensity distribution from the center of those objects to their
boundary within a user-controlled number of bins, for each object.

The distribution can be measured within a single identified object,
in which case it is relative to the "center" of the object (as
defined as the point farthest from the boundary), or another object
can be used as the center, an example of which would be using Nuclei
for centers within Cells.

Three features are measured for each object:
- Fraction of total stain in an object at a given radius.
- Mean fractional intensity at a given radius (Fraction of total

intenstiy normalized by fraction of pixels at a given radius).
- Coefficient of variation of intensity within a ring, calculated
over 8 slices.

Features measured: Feature Number:
FracAtD | 1
MeanFrac | 2
RadialCV | 3

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 9200 $

137

Module: MeasureTexture

Help for the Measure Texture module:
Category: Measurement

SHORT DESCRIPTION:
Measures several texture features for identified objects or for entire
images.

Given an image with objects identified (e.g. nuclei or cells), this
module extracts texture features for each object based on a corresponding
grayscale image. Measurements are recorded for each object. If "Image" is
chosen, the texture of the image overall is measured.

How it works:
Retrieves objects in label matrix format and a corresponding original
grayscale image and makes measurements of the objects. The label matrix
image should be "compacted": that is, each number should correspond to an
object, with no numbers skipped. So, if some objects were discarded from
the label matrix image, the image should be converted to binary and
re-made into a label matrix image before feeding into this module.

The scale of texture measured is chosen by the user, in pixel units. A
higher number for the scale of texture measures larger patterns of
texture whereas smaller numbers measure more localized patterns of
texture. It is best to measure texture on a scale smaller than your
objects’ sizes, so be sure that the value entered for scale of texture is
smaller than most of your objects. For very small objects (smaller than
the scale of texture you are measuring), the texture cannot be measured
and will result in a value of NaN (Not a Number) in the output file.

A range of texture scales may be specified, as a comma-separated list.
Measurements will be generated for all scales specified.

Note that texture measurements are affected by the overall intensity of
the object (or image). For example, if Image1 = Image2 + 0.2, then the
texture measurements should be the same for Image1 and Image2. However,
if the images are scaled differently, for example Image1 = 0.9*Image2,
then this will be reflected in the texture measurements, and they will be
different. For example, in the extreme case of Image1 = 0*Image2 it is
obvious that the texture measurements must be different. To make the
measurements useful (both intensity, texture, etc.), it must be ensured
that the images are scaled similarly. In other words, if differences in
intensity are seen between two images or objects, the differences in
texture cannot be trusted as being completely independent of the
intensity difference.

Features measured: Feature Number:
AngularSecondMoment | 1
Contrast | 2
Correlation | 3
Variance | 4

138

InverseDifferenceMoment | 5
SumAverage | 6
SumVariance | 7
SumEntropy | 8
Entropy | 9
DifferenceVariance | 10
DifferenceEntropy | 11
InfoMeas | 12
InfoMeas2 | 13
GaborX | 14
GaborY | 15

Texture Measurement descriptions:

Haralick Features:
Haralick texture features are derived from the co-occurrence matrix,
which contains information about how image intensities in pixels with a
certain position in relation to each other occur together. For example,
how often does a pixel with intensity 0.12 have a neighbor 2 pixels to
the right with intensity 0.15? The current implementation in CellProfiler
uses a shift of 1 pixel to the right for calculating the co-occurence
matrix. A different set of measurements is obtained for larger shifts,
measuring texture on a larger scale. The original reference for the
Haralick features is Haralick et al. (1973) Textural Features for Image
Classification. IEEE Transaction on Systems Man, Cybernetics,
SMC-3(6):610-621, where 14 features are described:
H1. Angular Second Moment
H2. Contrast
H3. Correlation
H4. Sum of Squares: Variation
H5. Inverse Difference Moment
H6. Sum Average
H7. Sum Variance
H8. Sum Entropy
H9. Entropy
H10. Difference Variance
H11. Difference Entropy
H12. Information Measure of Correlation 1
H13. Information Measure of Correlation 2
H14. Max correlation coefficient

*H14 is disabled because it is computationally demanding.

Gabor "wavelet" features:
These features are similar to wavelet features, and they are obtained by
applying so-called Gabor filters to the image. The Gabor filters measure
the frequency content in different orientations. They are very similar to
wavelets, and in the current context they work exactly as wavelets, but
they are not wavelets by a strict mathematical definition. As currently
implemented, the frequency content of the object is measured along the x-
and y-axis (i.e. in two different orientations). The original reference
is Gabor, D. (1946). "Theory of communication" Journal of the Institute
of Electrical Engineers, 93:429-441.

139

Module: Morph

Help for the Morph module:
Category: Image Processing

SHORT DESCRIPTION:
Beta version: provides access to built in Matlab morphological functions.

Beta version: provides access to built in Matlab morphological functions.
If you have defined more than one function to be applied, each individual
function is repeated the number of times specified before progressing to
the next function in the list.

Note that these will only operate on binary images

Settings:
The number of times repeated can be ’Inf’, which ceases operation when
the image no longer changes.

Beta

140

Module: OverlayOutlines

Help for the Overlay Outlines module:
Category: Image Processing

SHORT DESCRIPTION:
Places outlines produced by an identify module over a desired image.

Outlines (in a special format produced by an identify module) can be
placed on any desired image (grayscale, color, or blank) and then this
resulting image can be saved using the SaveImages module.

Settings:
Would you like to set the intensity (brightness) of the outlines to be
the same as the brightest point in the image, or the maximum possible
value for this image format?

If your image is quite dim, then putting bright white lines onto it may
not be useful. It may be preferable to make the outlines equal to the
maximal brightness already occurring in the image.

If you choose to display outlines on a Blank image, the maximum intensity
will default to ’Max possible’.

See also identify modules.

141

Module: PauseCellProfiler

Help for the PauseCP module:
Category: Other

SHORT DESCRIPTION:
Pauses CellProfiler interactively.

142

Module: PlaceAdjacent

Help for the Place Adjacent module:
Category: Image Processing

SHORT DESCRIPTION:
Places up to six images next to each other, either horizontally or
vertically, to produce a single image.

To place together many images, you can use this module multiple times in
one pipeline.

See also Tile.

143

Module: RelabelObjects

Help for RelabelObjects module:
Category: Object Processing

SHORT DESCRIPTION:

Relabels objects so that objects within a specified distance of each
other, or objects with a straight line connecting
their centroids that has a relatively uniform intensity,
get the same label and thereby become the same object.
Optionally, if an object consists of two or more unconnected components, this
module can relabel them so that the components become separate objects.

Relabeling objects changes the labels of the pixels in an object such
that it either becomes equal to the label of another (unify) or changes
the labels to distinguish two different components of an object such that
they are two different objects (Split).

If the distance threshold is zero (the default), only
objects that are touching will be unified. Note that selecting "unify" will not connect or bridge
the two objects by adding any new pixels. The new, unified object
may consist of two or more unconnected components.

As an experimental feature, it is possible to specify a grayscale
image to help guide the decision of which objects to unify. When
the module considers merging two objects, it looks at the pixels
along the line connecting their centroids in this image. If the
intensity of any of these pixels is below 90 percent of either
centroid, the objects are not unified.

In order to ensure that objects are labeled consecutively (which
other modules depend on), RelabelObjects may change the label (i.e.,
the object number) of any object. A new "measurement" will be added
for each input object. This "measurement" is a number that
indicates the relabeled object number.

144

Module: Relate

Help for the Relate module:
Category: Object Processing

SHORT DESCRIPTION:
Assigns relationships: All objects (e.g. speckles) within a parent object
(e.g. nucleus) become its children.

Allows associating "children" objects with "parent" objects. This is
useful for counting the number of children associated with each parent,
and for calculating mean measurement values for all children that are
associated with each parent. For every measurement that has been made of
the children objects upstream in the pipeline, this module calculates the
mean value of that measurement over all children and stores it as a
measurement for the parent, as "Mean_<child>_<category>_<feature>".
For this reason, this module should be placed *after* all Measure modules
that make measurements of the children objects.

An object will be considered a child even if the edge is the only part
touching a parent object. If an object is touching two parent objects,
the objects parent will be the higher numbered parent.

The minimum distances of each child to its parent are also calculated.
These values are associated with the child objects. If an "Other" object
is defined (e.g. Nuclei), then distances are calculated to this object
too, as well as normalized distances. Normalized distances for each
child have a range [0 1] and are calculated as:
(distance to the Parent) / sum(distances to parent and Other object)

To access the Child/Parent label matrix image in downstream modules, use
the "Other..." method to choose your image and type Parent_Child,
where ’Parent’ and ’Child’ are the names of the objects as selected in
Relate’s first two settings. For example, if the parent objects are
"Cytoplasm" and the child objects are "Speckles", then downstream choose
"Cytoplasm_Speckles".

Measurement Categories (each with only one Feature):
Parent, Children, SubObjectFlag, Distance, NormDistance

145

Module: RenameOrRenumberFiles
Help for the Rename Or Renumber Files module:
Category: File Processing

SHORT DESCRIPTION:
Renames or renumbers files on the hard drive.

This file renaming utility adjusts text within image file names.
Be very careful with this module because its purpose is to rename (=
overwrite) files!! You will have the opportunity to confirm the name
change for the first cycle only. The folder containing the files must not
contain subfolders or the subfolders and their contents will also be
renamed. It is worth doing a practice run with copies of images first.

Settings:

* How many characters to retain at the beginning and end of each
filename? These are the characters that will remain unaltered and note
that all other characters in between will be removed.
* The user may choose to add text or numbers between
the characters that are to be retained.

Examples:

Renumber:
DrosDAPI_1.tif -> DrosDAPI_001.tif
DrosDAPI_10.tif -> DrosDAPI_010.tif
DrosDAPI_100.tif -> DrosDAPI_100.tif
(to accomplish this, retain 4 characters at the end, retain 9 characters
at the beginning, and use 3 numerical digits between).

Renumbering is especially useful when numbers within image filenames do
not have a minimum number of digits and thus appear out of order when
listed in some Unix/Mac OSX systems. For example, on some systems, files
would appear like this and be measured out of expected sequence by
CellProfiler:
DrosDAPI_1.tif
DrosDAPI_10.tif
DrosDAPI_2.tif
DrosDAPI_3.tif
DrosDAPI_4.tif
...

Rename:
1DrosophilaDAPI_1.tif -> 1DrosDP_1.tif
2DrosophilaDAPI_10.tif -> 2DrosDP_10.tif
3DrosophilaDAPI_100.tif -> 3DrosDP_100.tif
(to accomplish this, retain 4 characters at the end, retain 5 characters
at the beginning, enter "DP" as text to place between, and leave
numerical digits as is).

146

Module: RescaleIntensity

Help for the Rescale Intensity module:
Category: Image Processing

SHORT DESCRIPTION:
Changes intensity range of an image to desired specifications.

The intensity of the incoming images are rescaled by one of several
methods. This is especially helpful for converting 12-bit images saved in
16-bit format to the correct range (see method E).

Settings:

Rescaling method:
(S) Stretch the image so that the minimum is zero and the maximum is
one.

(E) Enter the minimum and maximum values of the original image and the
desired resulting image. Pixels are scaled from their user-specified
original range to a new user-specified range. If the user enters "AE"
(Automatic for Each), then the highest and lowest pixel values will be
Automatically computed for each image by taking the maximum and minimum
pixel values in each image. If the user enters "AA" (Automatic for All),
then the highest and/or lowest pixel values will be Automatically computed
by taking the maximum and minimum pixel values in all the images in the
set.

The user also has the option of selecting the values that pixels
outside the original min/max range are set to, by entering numbers in
the "For pixels above/below the chosen value..." boxes. If you want
these pixels to be set to the highest/lowest rescaled intensity values,
enter the same number in these boxes as was entered in the highest/lowest
rescaled intensity boxes. However, using other values permits a simple form of
thresholding (e.g., setting the upper bounding value to 0 can be used for
removing bright pixels above a specified value)

To convert 12-bit images saved in 16-bit format to the correct
range, use the settings 0, 0.0625, 0, 1, 0, 1. The value 0.0625 is equivalent
to 2^12 divided by 2^16, so it will convert a 16 bit image containing
only 12 bits of data to the proper range.

(G) Rescale the image so that all pixels are equal to or greater
than one.

(M) Match the maximum of one image to the maximum of another.

(C) Convert to 8 bit: Images in CellProfiler are normally stored as
numerical class double in the range of 0 to 1. This option converts these
images to class uint8, meaning an 8 bit integer in the range of 0 to 255.
This is useful to reduce the amount of memory required to store the
image. Warning: Most CellProfiler modules require the incoming image to

147

be in the standard 0 to 1 range, so this conversion may cause downstream
modules to behave unexpectedly.

(T) Text: rescale by dividing by a value loaded from a text file with LoadText.

See also SubtractBackground.

148

Module: Resize

Help for the Resize module:
Category: Image Processing

SHORT DESCRIPTION:
Resizes images.

Images are resized (smaller or larger) based on the user’s inputs. You
can resize an image by applying a resizing factor or by specifying a
pixel size for the resized image. You can also select which interpolation
method to use. This module uses the MATLAB built-in function imresize.

149

Module: Restart

Help for the Restart module:
Category: File Processing

SHORT DESCRIPTION:
Restarts image analysis which had failed or was canceled, using the
partially completed output file.

Restarts an analysis run where it left off. Put Restart into a new
pipeline with no other modules. Click Analyze images. When the dialog
"Choose a settings or output file" appears, select the output file of the
incomplete run. Click OK and the pipeline will load from the output file
and analysis will continue where it left off during the partially
completed run.

150

Module: SaveImages

Help for the Save Images module:
Category: File Processing

SHORT DESCRIPTION:
Saves any image produced during the image analysis, in any image format.

Because CellProfiler usually performs many image analysis steps on many
groups of images, it does *not* save any of the resulting images to the
hard drive unless you use the SaveImages module to do so. Any of the
processed images created by CellProfiler during the analysis can be
saved using this module.

You can choose from among 18 image formats to save your files in. This
allows you to use the module as a file format converter, by loading files
in their original format and then saving them in an alternate format.

Please note that this module works for the cases we have tried, but it
has not been extensively tested, particularly for how it handles color
images, non-8 bit images, images coming from subdirectories, multiple
incoming movie files, or filenames made by numerical increments.

Settings:

Update file names within CellProfiler:
This setting stores file and path name data in handles.Pipeline
as well as a Per_image measurement. This is useful when exporting to a
database, allowing access to the saved image. This also allows
downstream modules (e.g. CreateWebPage) to look up the newly
saved files on the hard drive. Normally, whatever files are present on
the hard drive when CellProfiler processing begins (and when the
LoadImages module processes its first cycle) are the only files that are
accessible within CellProfiler. This setting allows the newly saved files
to be accessible to downstream modules. This setting might yield unusual
consequences if you are using the SaveImages module to save an image
directly as loaded (e.g. using the SaveImages module to convert file
formats), because it will, in some places in the output file, overwrite
the file names of the loaded files with the file names of the the saved
files. Because this function is rarely needed and may introduce
complications, the default answer is "No".

Do you want to create the input image subdirectory structure in the
output directory?
If the input images are located in subdirectories (such that you used
"Analyze all subfolders within the selected folder" in LoadImages), you
can re-create the subdirectory structure in the output directory. Note:
This option can only be applied if you specified an original image for the
filename prefix above, and not with "N" or "=DesiredFilename" options.
Otherwise, all images will be saved in the output directory.

Special notes for saving in movie format (avi):

151

The movie will be saved after the last cycle is processed. You have the
option to also save the movie periodically during image processing, so
that the partial movie will be available in case image processing is
canceled partway through. Saving movies in avi format is quite slow, so
you can enter a number to save the movie after every Nth cycle. For
example, entering a 1 will save the movie after every cycle. When working
with very large movies, you may also want to save the CellProfiler output
file every Nth cycle to save time, because the entire movie is stored in
the output file (this may only be the case if you are working in
diagnostic mode, see Set Preferences). See the SpeedUpCellProfiler
module. If you are processing multiple movies, especially movies in
subdirectories, you should save after every cycle (and also, be aware
that this module has not been thoroughly tested under those conditions).
Note also that the movie data is stored in the handles.Pipeline.Movie
structure of the output file, so you can retrieve the movie data there in
case image processing is aborted. At the time this module was written,
MATLAB was only capable of saving in uncompressed avi format (at least on
the UNIX platform), which is time and space-consuming. You should convert
the results to a compressed movie format, like .mov using third-party
software. For suggested third-party software, see the help for the
LoadImages module.

See also LoadImages, SpeedUpCellProfiler.

152

Module: SendEmail

Help for the Send Email module:
Category: Other

SHORT DESCRIPTION:
Sends emails to a specified address at desired stages of the processing.

This module emails the user-specified recipients about the current
progress of the image processing. The user can specify how often emails
are sent out (for example, after the first cycle, after the last cycle,
after every N cycles, after N cycles). This module should be placed at
the point in the pipeline when you want the emails to be sent. If email
sending fails for any reason, a warning message will appear but
processing will continue regardless.

Settings:
Address to: you can send messages to multiple email addresses by entering
them with commas in between.

SMTP server: often the default ’mail’ will work. If not, ask your network
administrator for your outgoing mail server, which is often made up of
part of your email address, e.g., Something@company.com. You might be
able to find this information by checking your settings/preferences in
whatever email program you use.

153

Module: SmoothOrEnhance

Help for the SmoothOrEnhance module:
Category: Image Processing

SHORT DESCRIPTION:
Smooths (blurs) or enhances (sharpens) images.

Settings:

Smoothing Method:
Note that smoothing is a time-consuming process, and fitting a polynomial
is fastest but does not allow a very tight fit as compared to the slower
median filtering method. Artifacts with widths over ~50 take substantial
amounts of time to process.

BRIGHT SPECKLE DETECTION: ’Enhance BrightRoundSpeckles’ performs
morphological tophat filtering, which has the effect of enhancing round
objects with size equal to, or slightly smaller than, the ObjectWidth setting.
’Remove BrightRoundSpeckles’ is a filtering method to remove bright, round

speckles, equivalent to a morphological open operation (an erosion followed by a dilation).
When followed by a Subtract module which subtracts the smoothed image from the original,
bright round-shaped speckles will be enhanced. This is effectively the
same as ’Enhance BrightRoundSpeckles’, or tophat filtering. We used
MATLAB’s built-in imtophat and imopen function to perform these
operations; more information can be found by accessing MATLAB’s help at
http://www.mathworks.com.
Then, you could use the ApplyThreshold module to make a binary

speckles/non-speckles image. Furthermore, the IdentifyPrimAutomatic can
be used on the thresholded image to label each speckle for your analysis.

ENHANCE NEURITES: This method maximizes the contrast of objects slightly
less than the width of the Object Width setting, while leaving other
structures intact. For example, this is useful for enhancing thin
neurite processes while leaving cell bodies morphologically intact.
The algorithm applied is Orig+tophat(Orig)-bottomhat(Orig), from
Zhang et al., 2007, J. Neuroscience Methods.

ENHANCE DARK HOLES: This method fills in dark holes surrounded by a
bright ring. The result is an image in which the holes appear as bright
spots. A range of filter sizes can be provided to capture variations in
ring diameter.

SMOOTH KEEPING EDGES: ’Smooth Keeping Edges’ smooths the images while
preserving the edges. It uses the Bilateral Filter, as implemented by
Jiawen Chen.

Special note on saving images: If you want to save the smoothed image to
your computer to use it for later sessions in CellProfiler, you should
save the smoothed image in ’.mat’ format to prevent degradation of the
data.

154

Technical note on the median filtering method: the artifact width is
divided by two to obtain the radius of a disk-shaped structuring element
which is used for filtering. No longer done this way.

See also CorrectIllumination_Apply, CorrectIllumination_Calculate.

155

Module: SpeedUpCellProfiler

Help for the Speed Up CellProfiler module:
Category: Other

SHORT DESCRIPTION:
Speeds up CellProfiler processing and conserves memory.

Speeds up CellProfiler processing and conserves memory by reducing the
frequency of saving partial output files and/or clearing the memory.

Settings:

* Output files should be saved every Nth cycle?
To save the output file after every cycle, as usual, leave this set to 1.
Entering a larger integer allows faster image processing by refraining
from saving the output file after every cycle is processed. Instead, the
output file is saved after every Nth cycle (and always after the first
and last cycles). For large output files, this can result in substantial
time savings. The only disadvantage is that if processing is canceled
prematurely, the output file will contain only data up to the last cycle
that was a multiple of N, even if several cycles have been processed
since then. Another hint: be sure you are not in Diagnostic mode (see
File > Set Preferences) to avoid saving very large output files with
intermediate images, because this slows down CellProfiler as well.

* Do you want to clear the memory?
If yes, everything in temporary memory will be removed except for the
images you specify. Therefore, only the images you specify will be
accessible to modules downstream in the pipeline. This module can
therefore be used to clear space in the memory.
Note: currently, this option will remove everything in the memory, which
may not be compatible with some modules, which often store non-image
information in memory to be re-used during every cycle.

156

Module: SplitOrSpliceMovie

Help for the Split Or Splice Movie module:
Category: File Processing

SHORT DESCRIPTION:
Creates one large movie from several small movies, or creates several
small movies from one large movie.

This module is only compatible with AVI format movies.

Settings:

Where are the existing avi-formatted movies?
Typing a period (.) will use the default image folder. Relative folder
locations will work also (e.g. ../SIBLINGFOLDER)

Where do you want to put the resulting files?
Typing a period (.) will use the default output folder. Relative folder
locations will work also (e.g. ../SIBLINGFOLDER)

For SPLICE, what is the common text in your movie file names?
The files to be spliced should all be located within a single folder. You
can choose a subset of movies in the folder to splice by specifying
common text in their names. To splice all movies in the folder, you can
just enter the file extension (e.g. ’.avi’).

For SPLIT, you can split only one movie at a time, and the full file name
should be entered here.

For SPLIT, how many frames per movie do you want?
The way CellProfiler reads movie files is that it reads each movie frame
by frame. It will open the first frame and run through the pipeline then
open the next and do the same. This is done until there are no more
frames. Indicating the number of frames can be seen as also indicating
the number cycles that a pipeline will be run.

Note: This module is run by itself in a pipeline; there is no need to use
a LoadImages or SaveImages module.

157

Module: SubtractBackground

Help for the Subtract Background module:
Category: Image Processing

SHORT DESCRIPTION:
Calculates the minimum pixel intensity value for the entire set of images
and subtracts this value from every pixel in every image.

Note that this is not an illumination correction module. It subtracts a
single value from every pixel across the image.

The intensity due to camera or illumination or antibody background
(intensity where no cells are sitting) can in good conscience be
subtracted from the images, but it must be subtracted from every pixel,
not just the pixels where cells actually are sitting. This is because we
assume that this staining is additive with real staining. This module
calculates the lowest possible pixel intensity across the entire image
set and subtracts this background value from every pixel in every image.
This module is identical to the Apply Threshold module (in shift mode),
except in the SubtractBackground module, the threshold is automatically
calculated as the 10th lowest pixel value. This will not push any values
below zero (therefore, we aren’t losing any information). It moves the
baseline up and looks prettier (improves signal to noise) without any
’ethical’ concerns.

If images have already been quantified and you want to apply the concept
of this module without reprocessing your images, then multiply the
background threshold calculated by this module during the first image
cycle by the number of pixels in the image to get the number that should
be subtracted from the intensity measurements.

If you want to run this module only to calculate the proper threshold to
use, simply run the module as usual and use the button on the Status
window to stop processing after the first image cycle.

How it works:
Sort each image’s pixel values and pick the 10th lowest pixel value as
the minimum. Typical images have a million pixels. The lowest pixel value
is chosen because it might be zero if it is a stuck pixel. It is quite
certain that there will not be 10 stuck pixels so this should be safe.
Then, take the minimum of these values from all the images. This scalar
value should be subtracted from every pixel in the image. CellProfiler is
not calculating a different value for each pixel position in the image
because in a small image set, that position may always be occupied by
real staining.

Features measured: Feature Number:
IntensityToShift | 1

NOTE: The functionality performed by this module can also be performed by
CorrectIllumination_Calculate and CorrectIllumination_Apply. You may want

158

to consider using those modules instead.

See also ApplyThreshold.

159

Module: Tile

Help for the Tile module:
Category: Image Processing

SHORT DESCRIPTION:
Creates one large, tiled image from all images of a certain type.

Allows many images to be viewed simultaneously, in a grid layout you
specify (e.g. in the actual layout in which the images were collected).

If you want to view a large number of images, you will generate an
extremely large file (roughly the size of all the images’ sizes added
together) which, even if it could be created, could not be opened by any
image software anyway. There are several ways to allow a larger image to
be produced, given memory limitations: (1) Decrease the resolution of
each image tile by entering a fraction where requested. Then, in the
window which pops open after Tile finishes, you can use the ’Get high res
image’ button to retrieve the original high resolution image. (Sorry,
this button is not yet functional). (2) Use the SpeedUpCellProfiler
module just before this module to clear out images that are stored in
memory. Place this module just prior to the Tile module (and maybe also
afterwards) and ask it to retain only those images which are needed for
downstream modules. (3) Rescale the images to 8 bit format by putting in
the RescaleIntensity module just prior to the Tile module. Normally
images are stored in memory as class "double" which takes about 10 times
the space of class "uint8" which is 8 bits. You will lose resolution in
terms of the number of different graylevels - this will be limited to 256
- but you will not lose spatial resolution.

The file name (automatic) and sample info (optional) can be displayed on
each image using buttons in the final figure window.

See also PlaceAdjacent.

160

Module: TrackObjects

Help for the Track Objects module:
Category: Object Processing

SHORT DESCRIPTION:
Allows tracking objects throughout sequential frames of a movie, so that
each object maintains a unique identity in the output measurements.

This module must be run after the object to be tracked has been
identified using an Identification module (e.g., IdentifyPrimAutomatic).

Settings:

Tracking method:
Choose between the methods based on which is most consistent from frame
to frame of your movie. For each, the maximum search distance that a
tracked object will looked for is specified with the Neighborhood setting
below:

Overlap - Compare the amount of overlaps between identified objects in
the previous frame with those in the current frame. The object with the
greatest amount of overlap will be assigned the same label. Recommended
for movies with high frame rates as compared to object motion.

Distance - Compare the distance between the centroid of each identified
object in the previous frame with that of the current frame. The
closest objects to each other will be assigned the same label.
Distances are measured from the perimeter of each object. Recommended
for movies with lower frame rates as compared to object motion, but
the objects are clearly separable.

Measurement - Compare the specified measurement of each object in the
current frame with that of objects in the previous frame. The object
with the closest measurement will be selected as a match and will be
assigned the same label. This selection requires that you run the
specified Measurement module previous to this module in the pipeline so
that the measurement values can be used to track the objects.

Catagory/Feature Name or Number/Image/Scale:
Specifies which type of measurement (catagory) and which feature from the
Measure module will be used for tracking. Select the feature name from
the popup box or see each Measure module’s help for the numbered list of
the features measured by that module. Additional details such as the
image that the measurements originated from and the scale used as
specified below if neccesary.

Neighborhood:
This indicates the region (in pixels) within which objects in the
next frame are to be compared. To determine pixel distances, you can look
at the markings on the side of each image (shown in pixel units) or
using the ShowOrHidePixelData Image tool (under the Image Tools menu of
any CellProfiler figure window)

161

How do you want to display the tracked objects?
The objects can be displayed as a color image, in which an object with a
unique label is assigned a unique color. This same color is maintained
throughout the object’s lifetime. If desired, a number identifiying the
object is superimposed on the object.

What number do you want displayed?
The displayed number is the unique label assigned to the object or the
progeny identifier.

Do you want to calculate statistics:
Select whether you want statistics on the tracked objects to be added to
the measurements for that object. The current statistics are collected:

Features measured: Feature Number:
TrajectoryX | 1
TrajectoryY | 2
DistanceTraveled | 3
IntegratedDistance | 4
Linearity | 5
LostObjectCount | 6
NewObjectCount | 7

In addition to these, the following features are also recorded: Label,
Lifetime as a per-object measurement, and the number of unique objects
that have appeared and dissappeared in each frame.

Desscription of each feature:
Label: Each tracked object is assigned a unique identifier (label).
Results of splits or merges are seen as new objects and assigned a new
label.

Trajectory: The direction of motion (in x and y coordinates) of the
object from the previous frame to the curent frame.

Distance traveled: The distance traveled by the object from the
previous frame to the curent frame (calculated as the magnititude of
the distance traveled vector).

Lifetime: The duration (in frames) of the object. The lifetime begins
at the frame when an object appears and is ouput as a measurement when
the object disappears. At the final frame of the image set/movie, the
lifetimes of all remaining objects are ouput.

Integrated distance: The total distance traveled by the object during
the lifetime of the object

Linearity: A measure of how linear the object trajectity is during the
object lifetime. Calculated as (distance from initial to final
location)/(integrated object distance). Value is in range of [0,1].

LostObjectCount: Number of objects that appear in the previous frame
but have no identifiable child in the current frame

162

NewObjectCount: Number of objects that appear in the current frame but
have no identifiable parent in the previous frame

What do you want to call the image with the tracked objects?
Specify a name to give the image showing the tracked objects. This image
can be saved with a SaveImages module placed after this module.

Additional notes:

In the figure window, a popupmenu allows you to display the objects as a
solid color or as an outline with the current objects in color and the
previous objects in white.

Since the movie is processed sequentially by frame, it cannot be broken
up into batches for execution on a distributed cluster.

If running on a cluster and saving the colored image with text labels,
the labels will not show up in the final result. This is a limitation of
using MATLAB’s hardcopy command.

See also: Any of the Measure* modules, IdentifyPrimAutomatic

163

ImageTool: ImageToolWindow

Help for the Image Tool Window:
Category: Image Tools

SHORT DESCRIPTION:
The Image Tool Window opens when you click on any image and allows
opening the image in a new window, displaying a pixel intensity
histogram, measuring length in the image, changing the figure colormap,
and saving the image.

The Image Tool Window contains these functions:

Open in new window - Opens the image in its own, fresh window.

Histogram - Shows a pixel intensity histogram for the image.

Measure Length - This tool creates a line in the image. By moving the
ends of the line, you can measure distances in the image. Right-clicking
the line reveals several options, including deleting the line. You can
place multiple length-measuring lines on an image. Note that sometimes
this line may interfere when saving the underlying image.

Change Colormap - Opens a window that allows you to change the colormap
of the selected figure. You can select the default colormap (which you
can set under File > Set Preferences) or any other predetermined
colormap. Note that the colormap selected will apply to all non-RGB
images in the entire figure, and not only to the image selected. The
Apply To All button will change the colormap in all module display
windows and any other windows that contain images. If you are running the
developer’s version of CellProfiler, you can also open a colormap editor,
which enables you to create personalized colormaps. It will modify the
colormap of the last active figure, so be careful if you open it, click
another figure and go back to it, because you might be changing the
colormap of a figure you did not intend to change. See also Help >
General Help > Colormaps.

Save to Matlab workspace - If you are using Matlab Developer’s version,
this tool saves the image to the Matlab workspace with the variable name
"Image". Be careful not to overwrite existing variables in your workspace
using this tool.

Save to hard drive - Allows you to save the image to the hard drive. You
can specify the file name, the directory where it will be saved, and a
few other options. See the help for the Save Images module.

Technical details:
The CPimagetool function opens or updates the Image Tool window when the
user clicks on an image produced by a module. The tool is embedded by the
CPimagesc function which is used to display almost all images in
CellProfiler.

164

ImageTool: InteractiveZoom

Help for the Interactive Zoom tool:
Category: Image Tools

SHORT DESCRIPTION:
Allows interactive zooming over the image.

This tool allows you zoom into an image by moving the cursor over it. The
image will automatically be zoomed to the location of the cursor. You can
control the zoom percentage with mouse clicks, which by default will be
set to 50% of the image in the axis. The tool will also open a black text
box showing the current position of the mouse pointer.

Mouse click commands:
* Left-clicking will zoom in further.
* Right-clicking will zoom out.
* Shift-clicking (or simultaneously clicking the left and right mouse
buttons) at any point will display the original (un-zoomed) image, as
will moving the cursor outside of the current axis. The zoom percentage
is restored when the mouse is moved inside the axis.

* Double-clicking (either right or left button) zooms out to the original
image, and resets the zoom percentage (i.e. it will not be restored as
when shift-clicking).

The InteractiveZoom will work with all images in a figure, but only one
at a time. If you want to zoom into an image while currently zooming into
another, you will have to click on it to activate it, and you will lose
the zoom you had in the first image.

Note: there is a known bug that has no fix yet. When there are multiple
images in a figure, be careful not to double-click and move the pointer
fast enough such that one click lands on one image and the other lands in
another. This will create an error, although it will seldom happen.

To exit the InteractiveZoom, click the ’x’ in the zooming pixel location
panel, or click on InteractiveZoom again in the menu (it will toggle
on/off each time you select it).

165

ImageTool: OpenNewImageFile

Help for the Open New Image File tool:
Category: Image Tools

SHORT DESCRIPTION:
Opens an image file in a new window.

Use this tool to open an image and display it. Images are loaded into
CellProfiler in the range of 0 to 1 so that modules behave consistently.
The display is contrast stretched so that the brightest pixel in the
image is white and the darkest is black for easier viewing.

166

ImageTool: ShowHelpForThisMenu

Help for the Show Toolbox Help function:
Category: Image Tools

SHORT DESCRIPTION:
Shows Help menu for various Image Toolboxes.
**

Shows Help menu for various Image Toolboxes.

167

ImageTool: ShowOrHidePixelData

Help for the Show or Hide Pixel Data tool:
Category: Image Tools

SHORT DESCRIPTION:
Shows X,Y pixel location and intensity information in the figure window.

This tool shows the pixel intensity at each X,Y location as you hover
over points within an image. The pixels are displayed via a small box at
the lower left corner of the figure window. If the image is color (RGB),
three intensity values are shown: Red, Green, and Blue.

Currently, it can also measure lengths if you click the mouse at a
starting point and hold the button down while dragging, although this
could also be done with the Measure Length tool, accessible by clicking
on the image of interest and choosing Measure Length from the resulting
Image Tool window.

To exit the tool, click the ’x’ in the pixel intensity information panel.

168

ImageTool: ShowOrHidePixelDistances

Help for the Show or Hide Pixel Data tool:
Category: Image Tools

SHORT DESCRIPTION:
Creates a Distance tool on the current axes in the figure window.

The Distance tool is a draggable, resizable line, superimposed on an
axes, that measures the distance between the two endpoints of the line.
The Distance tool displays the distance in a text label superimposed over
the line. The tools specifies the distance in data units determined by
the XData and YData properties, which is pixels, by default.

Right-click the line to access the context menu. From here, the distance
tool can be deleted.

169

DataTool: AddData

Help for the Add Data tool:
Category: Data Tools

SHORT DESCRIPTION:
Allows adding information for each image cycle to an output file.

Note: this tool is beta-version and has not been thoroughly checked.

Use this tool if you would like to add text information about each image
(e.g. Gene names or sample numbers) to the output file alongside the
measurements that have been made. Then, the text information will be
exported with the measurements when you use the ExportData data tool,
helping you to keep track of your samples. You can also run the LoadText
module in your pipeline so this step happens automatically during
processing; its function is the same. Once the data is added to the
output file, you can view the text file within the output file by using
the ViewData data tool and selecting "Image". To delete the text file
from the output file, use the ClearData data tool.

Note that the number of text entries that you load with this module must
be identical to the number of cycles you are processing in order for
exporting to work properly.

The information to be added must be in a separate text file with the
following syntax:

DESCRIPTION <description>
<Text info for image cycle #1>
<Text info for image cycle #2>
<Text info for image cycle #3>

.

.

<description> is a description of the text information stored in the
file. It can contain spaces or unusual characters.

For example:

DESCRIPTION Gene names
Gene X
Gene Y
Gene Z

While not thoroughly tested, most likely you can load numerical data too.

See also the LoadText module, ViewData and ClearData data tools.

170

DataTool: CalculateRatiosDataTool

Help for the Calculate Ratios data tool:
Category: Data Tools

SHORT DESCRIPTION:
Calculates the product, ratio, sum, or difference between any
measurements already measured (e.g. Intensity of green staining in
cytoplasm/Area of cells)

This data tool can take any measurements in a CellProfiler output file
and multiply, divide, add, or subtract them. Resulting measurements can
also be saved and used to calculate other measurements.

The data tool currently works on an object-by-object basis (it calculates
the ratio for each object). If you need to calculate image-by-image
ratios or ratios for object measurements by whole image measurements (to
allow normalization), use the CalculateRatios module until this data tool
is updated to handle such calculations. Be careful with your denominator
data. Any 0’s found in it may corrupt your output, especially when
dividing measurements.

The new measurements will be stored under the first object’s data, under
the name Ratio.

See also CalculateRatios and all Measure modules.

171

DataTool: CalculateStatisticsDataTool

Help for the Calculate Statistics data tool module:
Category: Data Tools

SHORT DESCRIPTION:
Calculates measures of assay quality (V and Z’ factors) and dose response
data (EC50) for all measured features made from images.

Note: this tool is beta-version and has not been thoroughly checked.

See the help for the CalculateStatistics module for information on the
settings for this data tool and how to use it.

172

DataTool: ClearData

Help for the Clear Data tool:
Category: Data Tools

SHORT DESCRIPTION:
Removes information/measurements from an output file.

Note: this tool is beta-version and has not been thoroughly checked.

This tool lets the user remove a measurement or data field from a
CellProfiler output file. The same measurement can be removed from
several files.

After executing this option, CelProfiler will ask the user to specify the
output file(s) from which to remove data from. The user will then specify
which data to clear. In most cases, the data to be cleared will be data
providing information about an object.

173

DataTool: ConvertBatchFiles

Help for the Convert Batch Files tool:
Category: Data Tools

SHORT DESCRIPTION:
Converts output files produced by the Create Batch Files module into
typical CellProfiler output files.

Note: this tool is beta-version and has not been thoroughly checked.

CellProfiler data tools do not function on the batch output files created
by the Create Batch Files module because they are incomplete. They are
incomplete because each batch output file contains only the measurements
for one batch of images.

In order to access these measurements, they must be exported (using the
ExportDatabase data tool or ExportToDatabase module), or merged together
(using the MergeOutputFiles DataTool), or converted to regular
CellProfiler output files using this data tool. This data tool will save
new files with ’Converted’ as a prefix in the filename.

Important: note that the image cycles will be renumbered, starting with
2. For example, your batch output file ’Batch_102_to_201_OUT.mat’ will be
converted to ’ConvertedBatch_102_to_201_OUT.mat’, but when you access the
data within (e.g. using ViewData), image cycle #102 will now be image
cycle #2. Image cycle #1 will be the original image cycle #1. Image cycle
#1 is present in all the batch files, and is removed so that the
converted batch file will contain only the remainder of the image cycles.

Technical details: this data tool removes empty entries in the
handles.Measurements structure of the output file(s) you specify.

174

DataTool: DataLayout

Help for the Data Layout tool:
Category: Data Tools

SHORT DESCRIPTION:
Shows mean measurements for each image in a specified spatial layout.

Note: this tool is beta-version and has not been thoroughly checked.

When images are collected in a particular spatial layout, it is
sometimes useful to view measurements collected from the images in the
same spatial layout to look for patterns (e.g. edge effects). The mean
measurement for each image is shown in the plot that is produced.

175

DataTool: ExportData

Help for the Export Data tool:
Category: Data Tools

SHORT DESCRIPTION:
Exports measurements into a tab-delimited text file which can be opened
in Excel or other spreadsheet programs.

Once image analysis is complete, use this data tool to select the output
file to extract the measurements and other information about the
analysis. The data will be converted to a tab-delimited text file which
can be read by Excel, another spreadsheet program, or a text editor. You
can add the ExportToExcel module to your pipeline if you want to
automatically export data.

See also ExportDatabase data tool, ExportToDatabase module, ExportToExcel
module.

176

DataTool: ExportDatabase

Help for the Export Database tool:
Category: Data Tools

SHORT DESCRIPTION:
Exports data in database readable format, including an importing file
with column names.

NOTE:
This tool is not functional right now - use the ExportToDatabase module
within your pipeline instead. Sorry for the inconvenience!!

This data tool exports measurements to a SQL compatible format. It creates
MySQL or Oracle scripts and associated data files which will create a
database and import the data into it. You can also run the ExportToDatabase
module in your pipeline so this step happens automatically during
processing; its function is the same.

See the help for the ExportToDatabase module for information on the
settings for this data tool and how to use it.

Current known limitations and things to consider:

- No check is performed that the selected files are compatible, i.e.
were produced with the same pipeline of modules.

- The tool only works with standard CellProfiler output files, not
batch output files. Use the ConvertBatchFiles data tool to convert if
necessary.

- Image sets are numbered according to the order they are written by
this tool. This numbering may not be consistent with the order they
were processed, e.g. on the cluster. This can be fixed by adding an
extra feature field in handles.Measurements.Image

177

DataTool: ExportLocations

Help for the Export Locations tool:
Category: Data Tools

SHORT DESCRIPTION:
Exports center locations of objects. Specialty function for creating a
locations list for microscopy image acquisition of gridded spots.

Useful for creating a locations list for microscope.

178

DataTool: FlagImageByMeasurement

Help for the FlagImageByMeasurement data tool:
Category: Data Tools

SHORT DESCRIPTION:

This data tool can take any per-image measurements in a CellProfiler output file
and flag the measurements based on user-inputted values.

The new measurements will be stored under Experiment, with the name "QC"
flag.

179

DataTool: GenerateHistogramMovie

Help for the Generate Histogram Movie tool:
Category: Data Tools

SHORT DESCRIPTION:
Creates a movie of the histogram of any measurement. This will be done
after specifying which output file the measurements exist in and where to
write the resulting .avi file.

Note: this tool is beta-version and has not been thoroughly checked.

180

DataTool: Histogram

Help for the Histogram tool:
Category: Data Tools

SHORT DESCRIPTION:
Displays a histogram of individual object measurements.

Note: this tool is beta-version and has not been thoroughly checked.

The object measurements can be displayed in histogram format using this
tool. As prompted, select the output file containing the measurements,
then choose the measurement parameter to be displayed, and the sample
information label. It may take some time to then process the data.

SETTINGS:

* Which images’ measurements to display or export - To display data from
only one image, enter that image’s number as both the first and last
sample)

* The number of bins to be used

* Whether you want the histogram bins to contain the actual numbers of
objects in the bin or the percentage of objects in the bin

* How to determine the threshold values for the leftmost and rightmost
bins - on the Measurement axis (e.g. Area of Nuclei). For the leftmost
bin, any measurements less than the threshold will be combined in the
leftmost bin. For the rightmost bin, any measurements greater than or
equal to the thresholdd will be combined in the rightmost bin. Choosing
"Min/Max value found" will instruct CellProfiler to determine the
threshold values. Choosing "Other" will allow you to enter your custom
threshold values.

* Whether you want to calculate histogram data only for objects meeting a
threshold in a measurement - If you choose other than "None", you can
specify the type of threshold to use, and the threshold value.

* Whether you want to combine all the objects’ data to be displayed in a
single (cumulative) histogram or in separate histograms

* Whether the X axis will be the "Measurements" axis (e.g. Area of
Nuclei) or the "Number of objects in bin" axis. The default for the X
axis is "Measurements". By choosing "Number of objects in bin", you are
essentially flipping the axes. Flipping is possible for both bar and
line graphs, but not area graphs because there is no function that will
work. If you attempt to flip an area graph, you will get a warning
message, and the display will be a normal unflipped area graph.

* For multiple histograms, whether you want the "Number of objects" axis
to be absolute (the same for all histograms) or relative (scaled to fit
the maximum value for that sample)

181

* Whether you want the axis to be log scale

* The style of the graph: bar, line, area, or heatmap

* The color that the inital plot should be

* Whether you want to display the histograms (Impractical when exporting
large amounts of data).

* Whether you want to export the data - tab-delimited format, which can
be opened in Excel. When entering the filename, use the extension ".xls"
so it can be opened easily in Excel.

* Whether you want each row in the exported histogram or heatmap to
contain an image or a bin

NOTES:

Measurement axis labels for histograms: Typically, the measurement axis
labels will be too crowded. This default state is shown because you
might want to know the exact values that were used for the histogram
bins. The actual numbers can be viewed by clicking the ’This window’
button under ’Change plots’ and looking at the numbers listed under
’Labels’. To change the measurement axis labels, you can click ’Fewer’
in the main histogram window, or you can click a button under ’Change
plots’ and either change the font size on the ’Style’ tab, or check
the boxes marked ’Auto’ for ’Ticks’ and ’Labels’ on the ’X (or Y) axis’
tab. Be sure to check both boxes, or the labels will not be
accurate. To revert to the original labels, click ’Restore’ in the
main histogram window, but beware that this function does not work
when more than one histogram window is open at once, because the
most recently produced histogram’s labels will be used for everything.

Change plots/change bars buttons: These buttons allow you to change
properties of the plots or the bars within the plots for either
every plot in the window (’This window’), the current plot only
(’Current’), or every plot in every open window (’All windows’).
This includes colors, axis limits and other properties.

Other notes about histograms: (1) Data outside the range you
specified to calculate histogram bins are added together and
displayed in the first and last bars of the histogram. (2) Only the
display can be changed in this window, including axis limits. The
histogram bins themselves cannot be changed here because the data
must be recalculated. (3) If a change you make using the ’Change
display’ buttons does not seem to take effect in all of the desired
windows, try pressing enter several times within that box, or look
in the bottom of the Property Editor window that opens when you
first press one of those buttons. There may be a message describing
why. For example, you may need to deselect ’Auto’ before changing
the limits of the axes. (4) The labels for each bar specify the low
bound for that bin. In other words, each bar includes data equal to

182

or greater than the label, but less than the label on the bar to its
right.

See also PlotMeasurement data tool and DisplayHistogram and
DisplayImageHistogram modules.

183

DataTool: MeasurementCalculator

Help for the Measurement Calculator tool:
Category: Data Tools

SHORT DESCRIPTION:
Multiplies or divides measurements in output files.

Note: this tool is beta-version and has not been thoroughly checked.

This tool allows you to multiply or divide data taken from CellProfiler
output files. You can choose the two measurements you wish to use, and
choose whether to multiply or divide them either objectwise, by the image
mean, or by the image median. You can give a name to your new measurement
and save it for later use.

See also CalculateRatiosDataTool, CalculateRatios.

184

DataTool: MergeOutputFiles

Help for the Merge Output Files data tool:
Category: Data Tools

SHORT DESCRIPTION:
Merges together output files produced by the Create Batch Files module
into one regular CellProfiler output file.

Note: this module is beta-version and has not been thoroughly checked.

After a batch run has completed (using batch files created by the Create
Batch Files module), the individual output files contain results from a
subset of images and can be merged into a single output file. This module
assumes anything matching the pattern of Prefix[0-9]*_to_[0-9]*_OUT.mat is a
batch output file. The combined output is written to the output filename
you specify. Once merged, this output file should be compatible with data
tools.

Sometimes output files can be quite large, so before attempting merging,
be sure that the total size of the merged output file is of a reasonable
size to be opened on your computer (based on the amount of memory
available on your computer). It may be preferable instead to import data
from individual output files directly into a database - see the
ExportDatabase data tool or the ExportToDatabase module.

Technical notes: The handles.Measurements field of the resulting output
file will contain all of the merged measurement data, but
handles.Pipeline is a snapshot of the pipeline after the first cycle
completes.

See also: CreateBatchFiles, ExportDatabase data tool, ExportToDatabase
module.

185

DataTool: PlotMeasurement

Help for the Plot Measurement tool:
Category: Data Tools

SHORT DESCRIPTION:
Plots measured data in bar charts, line charts, or scatterplots.

Note: this tool is beta-version and has not been thoroughly checked.

Bar charts, line charts and one dimensional scatter plots show the mean
and standard deviation of a measurement. Two dimensional scatter plots
allow plotting one measurement against another. As prompted, select a
CellProfiler output file containing the measurements, choose the
measurement parameter to be displayed, and choose the display type.

See also Histogram data tool.

186

DataTool: ShowDataOnImage

Help for the Show Data on Image tool:
Category: Data Tools

SHORT DESCRIPTION:
Produces an image with measured data on top of identified objects.

Note: this tool is beta-version and has not been thoroughly checked.

This tool allows you to extract measurements from an output file and
overlay any measurements that you have made on any image, very much like
the DisplayDataOnImage module. For example, you could look at the DNA
content (e.g. IntegratedIntensityOrigBlue) of each cell on an image of
nuclei. Or, you could look at cell area on an image of nuclei.

First, you are asked to select the measurement you want to be displayed
on the image. Next, if your output file has measurements from many
cycles, you are asked to select which sample/cycle number to view. Then,
you are asked to select an image to display the measurements over. You
can choose from among the list of images saved in the output file you
chose (which are generally the original images loaded by a LoadImages or
LoadSingleImage module), or you can browse for an image manually (e.g. a
cropped image that was created during the pipeline and saved on the disk
by a SaveImages module). You must try to select the image from which the
measurements were taken because the tool will try to display each
measurement over the corresponding object, so if the image is not the
right one, the data will make no sense. Once all these settings are
chosen, extraction ensues and eventually the image will be shown with the
measurements on top.

You can then use the InteractiveZoom under the CellProfiler Image Tools
menu to zoom in on this image. If the text is overlapping and not easily
visible, you can change the number of decimal places shown with the
’Significant digits’ button, or you can change the font size with the
’Text Properties’ button. You can also change the font style, color, and
other properties with this button. If you want to go back to the original
label settings, click the ’Restore labels’ button. Alternatively, you can
hide and show the labels by clicking the ’Hide labels’ and ’Show labels’
buttons, respectively.

The resulting figure can be saved in MATLAB format (.fig) or exported in
a traditional image file format.

See also DisplayDataOnImage.

187

DataTool: ShowPlateMapData

Help for the Show Plate Map Data tool:
Category: Data Tools

SHORT DESCRIPTION:
Shows measurement data for plate maps in heat-map form

This tool lets you display the data in a measurements file in plate map
format. One image per image set should use FileNameMetadata or some other
mechanism to capture the plate’s name and the well row and column.
The user selects:
* the names of the measurements that provide the metadata information
* the measurement to display
* the minimum and maximum values for the measurement
* whether to display the mean, median, maximum or minimum value
for the measurement.

See also FileNameMetadata module

188

DataTool: SubmitBatch

Help for the Submit Batch tool:
Category: Data Tools

SHORT DESCRIPTION:
Submits batches made by the CreateBatchFiles module to the cluster
via webserver.
**
This tool makes a webserver call to the URL,
"http://imageweb.broad.mit.edu/batchprofiler/cgi-bin/NewBatch.py", to
submit the batch files created by the CreateBatchFiles module to the
cluster using CPCluster.py and bsub. The webserver creates a record
in batchprofiler.batch for the batch, documenting the files and
creates one record in batchprofiler.run per bsub job submission.

The tool’s UI collects the following fields:
data_dir - the directory that holds "Batch_data.mat" which holds the

details for running the batch using CPCluster.py
email - the email of the submitter. The webserver sends a brief

email which gives the submitter the batch ID (which is
the primary key for the batch table) as a link to a
webpage that lets the user monitor the job’s progress.

queue - one of the bsub queues. see
http://iwww.broad.mit.edu/itsystems/lsf_clusters.html#whatqueues

for details.
project - the name of the project (for tracking resource usage

on the cluster)
write_data - whether or not to write the Batch_##_to_##_OUT.mat files.
batch_size - # of image sets per bsub submission.
memory_limit - # of MB of memory to be reserved for each batch on

the cluster. Default is 2000 MB
cpcluster - the revision # of the version of CPCluster to use. This

should correspond to the #### part of a directory like
/imaging/analysis/CPCluster/####.

timeout - the timeout parameter to CPCluster: how long to let a job
run before timing it out.

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Developed by the Whitehead Institute for Biomedical Research.
Copyright 2003,2004,2005.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org

$Revision: 8060 $

189

DataTool: ViewData

Help for the View Data tool:
Category: Data Tools

SHORT DESCRIPTION:
Displays data or measurements from a CellProfiler output file. This is
displayed after the user specifies which output file and which
measurements to extract data from.

Note: this tool is beta-version and has not been thoroughly checked.

This tool views any text data or measurements that have been stored in a
CellProfiler output file. It can be useful to check that any text data
added with the AddData tool is associated with the correct image sets.

190

