
For this tutorial, we will be building a pipeline to find individual worms in subregions and 
then extract measurements.

To begin, start CellProfiler 2.1. The CellProfiler interface consists of the pipeline panel to 
the left, which is divided into input modules and analysis modules. A space for module 
notes for annotations and a file list will appear to the right. To provide CellProfiler with 
images files to be analyzed, drag and drop the input image files into the file list space. 

The input module metadata enables extraction of metadata information from the image 
file names and folders. Click on metadata and a list of input modules and the modules 
settings for the Metadata module will appear on the right.

Check the box Extract Metadata and a number of options will appear underneath. 
Select Extract from File/folder name as the extraction method in order to extract the well 
ids from the file names using regular expressions.

To learn more about regular expressions, click on the question mark next to this option 
in the module settings. Click “Add another extraction method” and then extract the plate 
and gene names from the folder names using regular expressions. 

Verify your metadata extraction using the update button below the module settings to 
ensure that each input image from the images module is associated with the plate, 
gene, and well id metadata. 

Next, select the input module names and types. Set the input image type to Color 
Images and assign the images the name RawData. 

The group’s modules is not needed for this assay, so it can be left as its default setting. 
In order to load the worm model, you will need to adjust the output settings. Click on the 
View Output settings button in the button left of the CellProfiler interface and then adjust 
the default output folder to point to the folder where you want to store your output.

Once the input modules are all set, the analysis pipeline is built up by inserting modules 
into the analysis panel. Modules are added by clicking the plus sign next to Adjust 
Modules in the bottom left corner of the interface to bring up a list of selectable 
modules. 

Most object detection methods in CellPrpofiler are designed for bright objects on a dark 
background. Since the input images are color images with a bright background, the first 
thing we need to do is invert the image pixel intensities. Adding the module called 
ImageMath located under the module category Imaging Processing.

Add the module by selecting and double clicking it. The module’s now been added to 
your analysis pipeline. When the module is selected, its settings are shown on the panel 
to right where they can be adjusted. For this module, select invert as the operation 
called the output image InvertedRaw and select RawData as the input.



Most images processing algorithms operate on greyscale data, so the next thing we 
need to do is convert the inverted color image into a greyscale image in two different 
ways. First, we add the module color to grey, and then combine the red, green, and blue 
channels of the inverted raw image into a single image set that we will call a OrigGrey. 
The image will be used to identify the worms.

To see the effect of a module, click on start test mode. It is now possible to step through 
the analysis pipeline and model the output at each step. Add another color to grey 
module and this time, split the red, green, and blue channels and called them OrigRed, 
OrigGreen, and OrigBlue. These images will be used for identification of bubbles and 
fatty regions.

As it turns out, bubbles have high contrast in the red image channel and appear brighter 
than the worms in the inverted image. The same is true for the edges of the wells visible 
in the corners of the image. We can detect both of these structures in the origRed 
image using the object identification module IdentifyPrimaryObjects. using a manual 
intensity threshold of .5, and allowing a size range from 10 pixels to 10,000 pixels.

Make sure not to discard objects touching the border of the image, as we do not want to 
lose clusters of worms were only one or a few worms are partly outside the field of view. 
In this case, we will not attempt to separate touching objects, and we will call the output 
Well_n_Bubbles. 

We also want to remove shadows surrounding bubbles and well edges. to do this, we 
will add the module ExpandorShrinkObjects and select expand objects by specified 
number of pixels, and expend the Well_n_bubbles object by 5 pixels. We will call the 
output expanded Wells_n_bubbles.

Next, we use the mask image module to mask the origGray image with 
expanded_well_n_bubbles, to get a new image, MaskedGray, without artifacts. Make 
sure to invert the mass in order to keep worms and remove artifacts. We will now use 
IdentifyPrimaryObjects to separate worms and worm clusters from the image 
background. 

With the MaskedGrey image as input, we set the size range from between 20 pixels and 
30000 pixels in order to remove small debris and ensure that large worm clusters are 
kept.

We use automated thresholding with global robust background as the method. Since 
there’s a risk for empty wells, we also set a minimum threshold level at 0.09. In this 
case, we will not attempt to separate touching objects. Uncheck the fill holes and 
identify objects setting. Finally, we will give the name WormObjects to the Worm 
Objects.

We can view the worm identification results by stepping through this module in test 
mode. 



Add the ConvertObjectsToImageModule to convert the worm objects to a binary image, 
call the output image WormBinary. 

Add the module UntangleWorms from the Worm Toolbox. Set it to Untangle, using the 
WormBinary as input and choose “both” as the overlapping style. This sets the module 
to work on overlapping mass when measuring size and shape, but non overlapping 
mass when measuring intensity. Click the box for retaining both kinds of outlines and set 
the training set file name to the DefaultWormModel.xml file. 

Again, we can view the untangling results by stepping through the module in test mode. 

As check the results use overlay outlines to overlay the worm outlines on the original 
RawData image. Select the two outlines and call the output image OrigOverlay. Now the 
worms have been identified in untangling, we want to begin to extract shape and 
intensity measurements.

We start by adding MeasureObjectSizeShape to the pipeline and measure from the 
NonOverlappingWorm objects. Be sure to deselect the Calculate the Zernike features 
since these measurements are not relevant to this context and add computational time. 

Since the true width of the worms will be biased by the width of the worm model, we 
want to extract the actual average width from the WormObjects. We achieve this by 
using the Morph module in order to calculate the distance transform of the WormBinary 
image. Select distance as the operation to perform and call the output image 
WormWidthsFromBinary.

Add the measure ObjectIntensity module to measure worm intensities. Select OrigRed 
OrigBlue and WormsWidthFromBinary as the images to measure. Select 
NonOverlappingWorms as the objects to measure. The measurements on 
WormWidthsFromBinary will provide information on the worm widths while 
measurements on OrigRed and OrigBlue will provide information on the stained 
distribution and color. 

The StraightenWorms module from the Worm Toolbox extracts intensity measurements 
from subregions of the worms after digitally straightening the worms and dividing them 
into a fixed number of transfer segments in longitudinal stripes. These measurements 
can provide information on where fat is located inside the worm. 

In this module, we select “NonOverlappingWormsToStraightren” and specify to 
defaultwormmodel.xml as a training set. We then select a single transfer segment and 
five longitudinal stripes. Note that if a head marker is available, all worms could be 
automatically aligned. We select OrigBlue as the image for measurements.

Before identifying the fat subregions of the worm, we want to mask away all regions in 
the image that should not be considered as a worm. We do this by adding the module 
MaskImage. 



Set OrigBlue as the input image and WormsBinary as the masking image. The OrigBlue 
image is selected to define fatty regions. Since the has its greatest contrast in the blue 
image channel. The output of this module is called MaskedBlue. Now we use identify 
primary objects to find the fatty regions. 

This time, we let the diameter vary in size from 5 pixels to 10,000 pixels and specify a 
fixed intensity threshold for whats regarded as fat, set for .4 for this dataset. This fixed 
threshold was selected by trying a range of thresholds and viewing the result and 
should be adjusted for a new dataset. We do not attempt to separate clumped objects 
burt we do retain the outlines. 

We will call the output objects FatObjects and the outlines FatOutlines. 

To be able to see the detected fat outlines we will use the OverlayOutlines module to 
add them to the image to which we already outlined the worms, namely OrigOverlay. 
We do this by adding the module OverlayOutlines and selecting OrigOverlay as the 
image on which to display the outlines, selecting FatOutlines for the outlines and calling 
the output image OrigOverlayWithFat.

Run the pipeline in test mode to individually confirm the output. 

Now extract the shape in intensity measurements from the FatObjects by adding a 
module MeasureObjectSizeShape. Uncheck the Run Zernike feature again.

We also add the module MeasureObjectIntensity and measure intensity features from 
OrigBlue and OrigRed images with FatObejcts as the selected Objects. 

In order to assign each detected fatty region to a worm we add the module 
RelateObjects with FatObjects as the children and NonOverlappingWorms as the 
parents. We also check the calculate per-parent means for all children measurements 
box to aggregate the fast statistics for each worm. 

Finally, we’ll save all measurements segmentations, worm outlines, as well as the 
images with the overlayed outlines. At the module SaveImages and save the 
OrigOverlay with FatImage using the RawData file name as the prefix and _res as the 
appended suffix

Next, add another SaveImages module to save the worm outlines as they will be used 
for later in the machine learning step in CellProfilerAnalyst. Select the overlap Worm 
Outlines as the input, the RawData name for the prefixes above and _outlines as the 
suffix. Also, check the record file and path information to the saved image box. 

Add a third SaveImages module to save the segmentation mass called 
OverlappingWorms and save them as objects with the file name extension 
_worm_objects and the format as tif which is the only format for saving overlapping 
objects. These will be used for input for pipeline number four. 



Export all measurements to an SQLite database using the ExportToDatabaseModule. 
Choose SQLite as the database type and name the experiment MyExperiment. Check 
the box to create a CellProfiler Analyst properties file and choose 
NonOverlappingWorms as the objects used for location. The plate type should be 96. 

Set the plate metadata to plate and a well metadata to well and specify that only 
selected object will be used for export and select the NonOverlappingWormObjects. 

Your pipeline is now complete, so exit test mode by pressing the exit tested button. 
Since we’ve finished previewing the results, the display windows can be optionally 
closed to save time and memory during the analysis run. Select hide all windows on run 
from the window menu item to close all the display windows and have them remain 
closed during the analysis run. Then, press the Analyze Images button to run the 
pipeline on all images. 

The output will be in an SQLite database with measurements, a properties file for data 
exploration in CellProfiler Analyst, a set of images showing outlines of worms in fatty 
regions on top of the raw data, a set of images without lines only, and a set of 
segmentation masks describing the overlapping worms. 


